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ABSTRACT

A process distortion measure is a measure of the "distance" or
"badness of approximation" between two random processes. Examples are
the © or Ornstein distance, a limiting Prokhorov distance, and several
spectral distortion measures introduced in the speech literature. The
first part of this dissertation is devoted to the development of
several properties, interrelations, and interpretations of these distor-
tion measures. 1In particular, the measures are grouped by topological
and coding equivalence.

The second part of this work develops two applications of process
distortion measures to signal processing. One application is to the
mismatch problem of linear predictors and interpolators. It is shown
that variants of these measures can serve as indicators of the robust-
ness against the possible mismatch resulting when a system designed for
a particular source model is applied to another source. The second
application is to speech compression systems. A speech waveform coder
is designed using a universal coding approach for a tree-encoder fake-
process decoder system. Several distortion measures are utilized both
for gystem design and guality measurement. The system has only moderate
complexity, yet provides intelligible speech at a rate of less than one

bit per sample.
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Chapter 1

INTRODUCTION

A process distortion measure determines the degree of similarity
between two stochastic processes with respect to an underlying alphabet
distortion measure. The first explicit use of such a process distortion
measure was by Ornstein [8] in his proof of the Isomorphism Theorem of
Ergodic Theory. Subsequently, Moser, Phillips and Varadhan [45], and
Weiss [4] introduced a process distance related to the Prokhorov distance
between random variables [5]. For finite alphahets both distances are
easily seen to be equivalent. An extension of Ornstein’s distance to
complete separable metric space alphabets such as the real line was
made by Gray, Neuhoff and Shields [3]. It was there shown that this
measure -- called the E—distance -— could often be evaluated or bounded
in terms of the power spectral densities of two processes. In such
cases the E—distance can be viewed as a spectral distortion measure,
that is, a measure of the distortion between two spectra.

Spectral distortion measures have also been proposed for use in
system design and quality evaluation in speech signal processing studies
[24], [27], [28]. One goal of this dissertation is to develop the
properties, interrelations and interpretations of these various distor-
tion measures. Chapter 2 is deveted to a preliminary discussion of
stochastic processes, process distortion measures, and topologies
defined by such distortion measures. In Chapter 3, conditions are given
for the topological equivalence of the S—distance and the Prokhorov
process-distance. 1In certain cases, these measures become equivalent

to spectral distortion measures. Next, a "cookbook" of spectral distor-

tion measures is developed giving various topological and coding equi-



valences, properties, approximations and computational aspects of the
various measures.

The: second goal -of, this:.iwork ' is . the  application of pro-
cess distortion measures to signal processing. The first application
is to the mismatch problem of linear predictors and interpolators. It
is shown in Chapter 4 that variants of the process distortion measures
can serve as indicators of the robustness of such systems against the
possible mismatch of input sources. The second application is to the
design and quality evaluation of speech compression systems. This work
takes advantage of the fact that such spectral distortion measures
appear to be subjectively meaningful measures of speech quality. In
Chapter 5, one such compression system is developed and evaluated. The
method adopted is a parallel tree search encoder with a fake-process
decoder. The system does not use any on-line linear predictive coding
(LPC) techniques, but such techniques are used off-line to find a finite
codebook of autoregressive processes used to model the speech. Since the
system does not use on-line LPC, the implementation complexity is
medium. The reproduced voice is highly intelligible at 5-8 Kbps.

In the final chapter, another possible speech encoder is proposed
based on the predictor mismatch idea of Chapter 4. Spectral distortion
measures are crucial tools for the design.

The experimental work described here was carried out on the Infor-

mation Systems Laboratory PDP-11 UNIX multi-user system.



Chapter 2

PRELIMINARIES

2.1 STOCHASTIC PROCESSES

For simplicity, we consider only discrete time stochastic processes
since these are the most natural models for digital systems and since
discrete time processes can be used to approximate continuous time
processes.

Let A be a complete separable metric space and (d the Borel

g-field of subsets of A. Let Ak and &k denote replicas of A and

4 respectively. Define a sequence measurable space:

@7aM = x@a,a

k=-co
In other words, A” is the set of all doubly infinite sequences

X = (uu.,Xx

. —Z’Xul’XO’X

.), where X, € Ak for all k and am

13X21" ! ’

is the g-field generated by all cylinaer sets of the form:

J
= % o0 B PR
c; XA XA, XC.XC. X...X A AL X

with Ckeﬁk and i< j. Let by be a probability measure on (Am,ﬁm).

The triplet [Aw,dm,u is a probability space and is called a sequence

ol

space. The sequence of random variables Xn:Aoo —» A defined by Xn(X) = x,
forms a stochastic process which is denoted by a,[A,pa], [A,an] or,

simply, {Xn}.

Let T:A” 5 A% be the shift transformation which maps a seguence X

into the sequence Tx where (Tx)n: X ,

I If e is shift invariant, i.e.

if po(TE) = p (E) for all Ec(”, then [Au,,X] is said to be stationary.

I = X =
f E(Xn+k) E(X ) and E(xn+k 1) E(X X ), all n,k,m hold, the process

[A,MQ,X] is ergodic if pa(E):o or 1 for all invariant sets, that is, sets



for which TE=E. Stationarity and ergodicity make possible the estimation
of moments usiug relative frequencies. If the second moment is finite,
then the process is called a second order process.

In the prediction and interpolation problems, we shall use a
mapping:

f:. A° L A (2.1.1)

k ~
to form a sequence of estimates %k = f(T x), where A is another

~
complete separable metric space (in most engineering problems, A=A=R,

the real line). In this case, the probability measure w, for

N ~ ~
X (...,%_1,x0,x1,...) is specified by
A -1 .~ A ~
p B = (2T (E) , E ed”
[0
Ao N . ~
Here [A”,d ,u. ] 1is the sequence space for x.
o

A weakly stationary process [A X] with a spectral distribution

rHey
F(A) which satisfies
7t
[ logF/ (Mdh > -» (2.1.2)
-7
is said to be nondeterministic, where F’(A) 1is the differentiation of

the absolute continuous part of F(A). If F(A) itself is absolutely

continuous, then (2.1.2) is reduced to

]t
[ log tM)dA > o 5 (2.1.3)
-7

where f(A) is the spectral density function of {Xn}. In this case

the process is said to be purely nondeterministic. The spectral factor-
ization theorem states that {Xn] is purely nondeterministic if and
only if the spectral density f has the following form [467:

4



iAo 2
£ = | ™)
where
i i\
£ = UfD(el ) )
= —k
D(z) = 2, d, 7z £ d ; |= sd,
k=0 '
(2.1.4)
dy = 1 '
@
2
25 |dk| s W ’
k=0 l
2 g,
op = exp{ (2m) [ log £(A)dM) ,
-7

that is, D(z) is a monic polynomial which is analytic in the open

S : : : : :
unit circle, and £ is a causal filter with a gain kquation

Gf'

(2.1.4) is equivalent to a one-sided moving average (MA) representation

[46]:

[=¢]
>, b
k=0

o B , (2.1.5)

2
where [gn; is white with E gn = 1. The white process {gfgn} is
called the innovations process of [XnJ. Since o < o for weakly

stationary processes, f(A) can also be expressed in factored form with

o) = oA , \
< k
A(z) = 2, a,z A0 ’z] > 1 ,
=0 (2.1.6)
aO = 1 ’
= 2
E a | <
=D 2



with Uf as before. This yields a one-sided autoregressive (AR) model

of the form:

[o0]
X = ;;é aX o+ ok . (2.1.7)

In the following chapters, the concept of Lp space of spectral

densities will be used. The Lp norm is defined by

8
1y |f(x)ypdx]1/p < o . (9.1.8)

=1L

1, = (0

Two spectral densities f(A) and g(A) are identified if f =g
almost everywhere. In this case, the class of spectral densities forms

an Lp normed linear space with the norm (2.1.8).



2.2 AUTOREGRESSIVE MODELS AND LADDER FORMS

Given a second order stochastic process [Xn} with a purely
e . th = .
nondeterministic spectral density f£(A), an m order autoregressive

model fm(K) of f(A) is defined by

2 ih,, 2
£ (M) = g.(m) /|A (e )| (2.2.1)
m T m
where
- K
= = = 2.2.2
A (2) 7 a 7 , &o=1, ( )
k=0
d . and iy 2 btained by the minimizati £
an {amk]kzl nd  o,(m are obtained by the minimization o
m T
2 1 id, 2
E|;§g akan—k| = = ﬁ f(x)[Am(e )| Tdr

2
The resulting minimum mean square error is given by gf(m) [18]. The

solution is given by Levinson’s equation [207:

2 g 4 —1) 0
gf(m) = 5= f f(k)Am(e Ydh = 3 amkrf(k)
- k=0
1 m
! —iky -ijh .
0 = f f(A)Am(e e dh = a  Fp(k-1)
-7 k=0
j:1,2, ,m

(2.2.3)
where [rf(k)} is the autocorrelation sequence of [Xn]. Note that
(2.2.3) is equivalent to the Yule-Walker [35] or correlation matching

equations:

2
s . 7 g _.(m) .
1 ik ! £ ikA
rf(k) = B I f(A)e dv = 0 f — .3 © dAr (2.2.4)
-7 -1 [A (e )'
. m
k=0,1 m



t
One obtains from (2.2.3) that for any m R order polynomial Cm(z) =

-1 -m
1+c. z B oeee B C B
1 m
2
7t ; 1 o.(m) .
1 ih, 2 1 f ik, 2
5 ff()‘u)’Cm(e )|[Tan = el e B L Ca
—1T -1t lAm(e )!
(2.2.5)
and
2 llt[‘m+1<f)]
oplm)” = ————
I, @
where -
AL = ‘%E Prdidet I, % 50 1 Ll
1% =
= (r (k-3);k,j=0,1,...,m-1}

is the Toeplitz autocorrelation matrix for the spectral density f£.

2 2 2
1t is well-known that gm(f) | o (£ = 0 [18]. By solving equation
(s -
(2.2.3) or (2.2.4), one obtains the autoregressive coefficients (amk}z_l.

A relative of the autoregressive coefficients is the set of partial
autocorrelation coefficients [34], [35]. They are also called reflec-
tion coefficients because of their meaning in the internal ladder
structure [36].

Levinson’s equation (2.2.3) can be rewritten as

—rf(g) rf(l) s rf(m)_ 1 7] —Gf(m)z -
r (1) r (0) . 0
£ £ 2
: ml| _ (2.2.6)
-rf(m) - e . . .rf(o)_ _amm 6




The reflection coefficients are then given by

..m . (2.2.7)

Note that ko = a

q 0o = 1. From (2.2.6), one obtains
[+ o o)) w ran| 1| [e@?]
T * coe r(m r . (m+ 0, (m
rgll)  w, (0 ) . %m1
= . (2.2.8)
rf(m) . . aﬁm 0
_Ff(m+l) - .. rf(O) 1L 0 ] _-ﬁm |
and
_ _ - _ _ _
rf(o) rf(l) Gy rf(m) rp(m+l) 0 B
rf(l) rf(O) : : a 0
= : (2.2.9)
‘ L 0 0
rf(m) rf( ) a .
2
. 0
er(m+1) rf( ) 1L 1 | _of(m) |
where
. m
B, = E amirf(m+l—1) . (2.2.10)
i=0
The operation, k:l x (2.2.9) + (2.2.8), yields
B 1T ] B 2 a a |
rf(O) rf(m+l) la gf(m) - kmBm
aml m Elmn 0}
: = . (2.2.11)
a +kaa 0
mm m ml
a a a 2
_rf(m+l) rf(O) 11 km i —5m+ kmof(m) |




From equations (2.2.6) and (2.2.11), the following set of equations is

obtained:
2 2 )
a_a
of(m+1) = crf(m) -kmBm
a a 2
s = kmof(m)
a = B = B o= i (2.2.12)
m+l,0 ~ ‘m0 ~ 0 ~ e
a —
m+1,1 Umi” kmam,m-l-l—i
a a
el mbl kmamO - km
/
Consider
a 2 o B
Am(z) = _23 amiZ v B0 T E
i=0
(2.2.13)
Ba(z) = z_(m+1)Aa(l/Z)
m m
Then, by equation (2.2.12), one obtains
a a a_a
= A
Am+l(z) m(z) + kmBm(z)
(2.2.14)
a a a a
zBm(z) = kmAm_l(z) + Bm—l(z)

Equation (2.2.14) provides an intriguing realization of an autoregressive
process depicted in Fig. 2.2.1. The structure is cal led the ladder from
realization of an autoregressive process. Because of (2.2.12) and

2 2
gf(m) = of(m+1) ,

-1 k, = 1 i=1,2,...,m . (2.2.15)

This property is important since {ké}? 1 can be quantized without
1° 1=

violating stability as long as (2.2.15) holds [20]. This ladder form

will be used in our applications on actual speech signals.

10



Fig..2, 2,1 Ladder realization of autoregressive process

11



2.3 D-DISTANCE AND PROKHOROV PROCESS-DISTANCE

First, the definitions of '"distortion measure," "distance” and
"metric" are given. Let Pq be a class of stochastic processes with

alphabet A. Then:

Definition 2.3.1: A distortion measure is an assignment d(x,B8) to each

by uB S PA such that

V3
O

(i) d(@,B) 2

(ii) d(o,a) = 0

Terminologies: '"p-distance' and "Prokhorov process-distance'" are used

even if they are not distances but distortion measures. If the
following properties are satisfied, 'metric'" will be used.

(1ii) d(a,B) = 0 implies o =B ,

(iv) d(a,B) = d(B,0) ,
(v)  d(e,B) +d(8,y) 2 d(a,y) for any W , Hgs Wy e Py

Note that a = B means ua(E) = uB(E] for all events EeEdf.

The p-distance [3] is a generalization of the Ornstein’s d=

distance [87], and is defined as follows:

Definition 2.3.3; Let A be a complete separable metric space. Given

two stationary stochastic processes [A,ua,X] and [A,uﬁ,Y],

n

and a family of distortion measures pn(',') on A" x A ;

n=1,2,..., then the p-distance 5(@,5) is defined by
P(a,p) = sup En(a,ﬁ) ;
n
where

) ; n _n
P, @,B) urllf E [P, (X7,Y)]
p P b

12



and

n n n I n n n
E [P, &X°,YD] = [ e Gx,y)ddp (x,7)
p Alxa”

n
and Pn is the class of all joint probability measures p on

n_ .n n n
(Ax A, A"x @™ with marginals By and u;, that is

Pl’l = {pn:pn(BXAn) :f dpn(xn,yn) :u;(E) ,
ExA”
o™ (A"xF) s I gt % :HE(F) ,
Aan
VEF e q)

The following property will be used in later sections.

Theorem 2.3.4 [37: Given a single-letter distortion measure, i.e.,

n _n g Bot
pn(X V) = s _23 D(Xi,yi) )
i=0
then,
pla,p) = p;gf Ep[p(XO,YO)] "
a,p
where Qj 5 is the collection of all stationary probability
E

measures on the sequence space (waAm, a%=a) having marginals

W and n i.e.
B’ ?

(64

O
1l

—~

Lo}

kel
~
g

8

s
|

by, (B,

p(A%xF) = (F), vVE, Fe@ )

be

13



Some other important properties [3] <for single letter distortion

measures are:

(i) sup En(a,ﬁ) = lim En(a,ﬁ)
n n -5 o

(ii) P is a metric if p(-,-) is a metric.

Another process distortion measure is related to the Prokhorov

distance [5]. There are several versions of the definition. We adopt

the following one:

Definition 2.3.5: Under the same condition as the Definition 2.3.3,

the Prokhorov process-distance is defined by

= 3 (n)
Hp(a,ﬁ) = szp Hp (©,B)
where
Hén) (0B == int inf[yn:pn{(xn,yn):Dn(xn,yn) > yn} = Yn] )

n
Y
E ePn n
where Pn is defined as previously.

Note that another definition:

—k . (k)
Hp(a,B) = sup {inf I " (,B)}
n l=n P
= 1lim nén) (a,B)
n 5 e

—k i e
is used in [47. Clearly, I _(o,8) = II_(¢,B). In either case 0 < II_(x,B)
) p ? = p ) r} p ’

= 1.

14



The preceeding definition is related to the Prokhorov distance

random variables. The original definition on random variables [6] is:

Hén)(a,ﬁ) = inf {e:uén)(F) = Mén)(F€)+ € ,V closed FC An}
3
vV inf {€=uén)(F) = uén)(F€)+e,V' closed E‘c:Ap]
€
where
Y = the maximum and
F¢ = {aneAn:Dn(an,F)< £}

n

and pn(-,-) is a metric for A 1f A" is a complete separable metric

space with the metric pn(-,-), an important equivalent definition [6] is
made. That is,

n n
H( )(Q,B) = inf [y: @ a joint measure p on A"xA™ with

p
4 ) ()

marginals bo 0 bg such that

p(n)[(xn,yn):pn(x“,yn) > 7} = 7]

If pn(-,') is a metric then ﬁp(a,B) is also a metric. We emphasize
that if pn(‘,‘) is not a metric, then the above two definitions need
not coincide. The limiting Prokhorov distortion of Definition 2.3.5 is
a limiting form of the second definition. The distance ﬁp is not a
true Prokhorov distance between processes since convergence with respect
to ﬁp is not equivalent to weak convergence.

Examples of alphabet distortion measures are as follows, When A

is countable, the most popular choice is

n n =
dn(x , ¥ ) =

o=

1
dH(xi,yi)
i=0

1
= - b T i f i 2,8,
- (number o i or X, # yi) ( 1)

15



This is the Hamming distance. The pP-distance in this case is reduced to
the Ornstein’s d-distance [8]. There are many properties found for

d [3], [8], [9]. A distance measure similar to Hamming’s is the Lee

distance [47] defined by

n _n 1 el 1 -l
L,y = o0 a(xg,y) = o 2 min{ |x -y, |,a-x;-y.|)
i=0 i=0
(2.3.2)
with A = {0,1,2,...,a-1}. It will be seen that P and ﬁp for d,

and f are equivalent.

Another class of an alphabet distortion measure when A =(0,1,2, ...

H

(2.3.3)

where k 1is the maximum integer for which one can find subsequences

1l < 12 o anie & 1k and Jl < Jg <« o < Jk with Xir = yir for

1< r= k. This is Levenshtein’s distance [4], [10]. Note that

sn(xn,yn) = dH(xn,yn). A generalization of sn(xn,yn) has been made

n

in [11]. A weighted Levenshtein distance for xn,yn c A,

,ee.,a-1l} is given by

1
tn(xn,yn) = = min(ku 4+ mv + nw) (2.3.4)

u, v, w are nonnegative weightings, and

k = number of substitution
m = number of insertion
n = number of deletion

16



to make x° match to yn. Note that u=v =w =1 1is the case that

Levenshtein adopted, u =1, v=w, W = « correspond to the Hamming

=
1]

distance , and u = o 1 reflect the case of sn(-,-). The

distortion measure tn(xn,y ) satisfies the requirements for a metric

except for symmetry.

n-1 9

> |x.,-v.,|”, i.e., the square error
. 1 1

i=0

alphabet distortion measure, we have the following:

1
For A=R, D (xn,yn) =
n n

Proposition 2.3.1: [3] Let [R:MQ’X] and [R’M5:Y] be zero-mean,

second order stationary processes having spectral densities

1 -1 2

fa(k) and fB(%). Then, for Dn(xn,yn) = }{ZE:O lxi_yil ,
we have that

= 1 p 2 e — 2

p@,B) = o= _£| VELD - £ | o = lyE, -

(2.3.5)

14 oy and HB are Gaussian measures, then

p,p) = | JE. - ?Hz (2.3.6)

p@,p) = |l vE, - Vi I, : o

17



2.4 DISTORTION MEASURES AND TOPOLOGY

If a metric d 1is assigned to a class of stochastic processes
Py then a pair (pA/d,d> forms a topological metric space. Here, pA/d
denotes the quotient space wherein “QEPA and “BEPA with d(o,B) =0
are considered equal. 1In this section, we generalize several standard
metric space ideas [2] to a distortion space where d need not be a
metric.

Consider a class Gh of subsets (called open sets) of PA/d
such that

(1) py/ded, , ded, ,

(ii) 0, € GE and 0, € Oh imply Ol f]Oz € Oa,
(iii) 0 ¢ c’d implies lL}Jove o’d |

(iv) for a given ¢ > 0 and o € PA/d

A
BE(CZ) = {p d@,B) <€,

5 € PA/d} c &

B d

Let Ty be the minimal class of open sets which satisfies (i)-(iv).

In other words, T, is the intersection of all classes Gé satisfying

(1) -(iv).

Definition 2.4.1: The pair (pA/d,'rd> is called the topological distor-

tion space induced by a distortion measure d.

The main purpose of this section is to develop criteria for the

comparison of topologies induced by different distortion measures.

18



Definition 2.4.2: Let T and g be two topologies, i.e., two classes

’

of open sets for PA' T 1is said to be coarser (or weaker) than
o if TC g, that is, every member of T is also a member of g.

An equivalent statement is that ¢ is finer (or stronger) than .

The comparison of topologies is discussed through the concept of
convergence of elements. A generalization of the convergence in a

topological space becomes possible using filters [27.

Definition 2.4.3: A nonempty family of sets 3§ is said to be a filter

if
) 443
(ii) A, Be F dimply AN Be F where A, BC Py -

(iii) A e ¥ and AC B imply B ¢ 3

If all open sets containing By belong to F , then F 1is said to

converge to T It is shown in standard topology texts (e.g., [2]),

that convergence of the filter F = {U:UD Am for some m} where
Am = {ua ) Py ,++.} 1s an extension of the notion of pointwise con-
m m+1
vergence of {ua }  in (PA/d, Td>. The following proposition can be
n

shown [2]:

Proposition 2.4.4 [2] Let Tl and Tz be two topologies for PA'

Then, the following two conditions are equivalent:

(i =,C

(ii) if a filter converges Wwith respect to Tz, that filter also
converges with respect to Ty

19



An immediate corollary is obtained:

Corollary 2.4.5: Let d1 and d2 be two distortion measures. If

d2(a,05) -0 as n . o implies dl(a,ah) - 0 for
o, Oy € PA/éz then two topologies defined by these distortion

measures have the relation

T, C T for . /d
dl d2 A" T2

We note that if dl(a,a) = dy(a,B)  for all y , bg € Py/dy,
then Corollary 2.4.5 is satisfied.

.. .9 will be simply denoted by d, = d,. The coarsest
d1 d2 2 1

topology is the so-called trivial topology (p ,TW> with B = {6,PA}.
On the other hand, the discrete topology (R ,TS> with £, = {all
subsets of PA} is the finest one.

Another form of implication and equivalence of distortion measure

is the following.

Definition 2.4.6: If for each b Hop By € Py dl(a,B) = dl(B,Y)

implies dz(a,ﬁ) = dz(d,y), then d, 1is said to be stronger in a

1

coding sense, and dl == d2 is used for notation.

The name and application of this concept arises in the following
coding or quantization problem. Given a distortion measure di and a
finite codebook T' of indices y for which y € Py define the minimum

~

~
distortion quantizer (or coder), Ci’ such that ci(a) =B if

di(a,ﬁ) = di(a,y) for all € I' with some tie-breaking rule. If

d;=> d,, then

20



4, (@,C, (@) = dy(@,C (@) ;

that is, the closest reproduction symbol Cl(a) under dl is also the

closest reproduction under dz. If d1 <:>.d2 then, the tie-breaking
N ~

rule can be chosen so that Cl(a) = Cz(&) for all ¢ and hence the

codes yield identical outputs for a given input.

21



Chapter 3

PROCESS DISTORTION MEASURES

3.1 CONDITIONS FOR TOPOLOGICAL EQUIVALENCE OF P AND ﬁp

It is useful to know when topologies defined by the E and ﬁp
distances, say <7 _ and 1

o II
P
properties and implications. The following propositions lead to suffi-

, coincide since each possesses different

cient conditions for T_ = T_
P II
P

Proposition 3.1.1: [38] For by ? MB € PA’ a class of stationary

processes, we have

{Hén)(a,s)}zg En(oc,a) ) (3.1.1)
{ﬁp(a,a)}z < P@,p) . (3.1.2)

Proposition 3.1.2: [38] If Py is bounded, that is,

* A
pn = sup pn(xn,yn) < e , (3.1.3)
Xn,yneAn
then
i * (n)
P @,B) = (1+pn)T[p («,B) : (3.1.4)
If
* *
p = sup Dn < ; (3.1.5)
n
i.e., B is uniformly bounded, then
- *
Pl,p) = (1+p )I[p(oz,B) : (3.1.6)

In the next proposition, boundedness is not required, but the

form of the alphabet distortion Dn is restricted in another sense.

22



This proposition is a generalization of a result given in [38] in the
sense that fewer restrictions are placed on the alphabet distortion pn,
In [52], a similar bound for Bn is given. That bound blows up to

infinity as n 5 «, however, and hence cannot be used for the process

distance.

Proposition 3.1.3: Let p(x,y) = d(x,y)q where d(.,.) 1is a metric

n-1

>, P(x.,y.). If there exist
¥ % 1=0 o

reference letters a , b € A and a constant r > 1 such that

=R e

and 0 <« g <o . Let pn(xn’yn) =

* T * T *
max[E {D(Xo,a )17, E [p(b ,YD)] 1 = P <= (3.1.7)
b L
(@4
then
- -1
p (B = Hén)(a,ﬁ) + K[Hén)(a,ﬁ)}r HE (3.1.8)
where K 1is a nonnegative finite number independent of n.
Moreover,
- = - r-1/r
Ppl,R) = Hp(a,s) + K{Hp(a,B)] . (8:1.98)
Proof.

The following three inequalities are used frequently in the proof:

=

1 n-1 5 n-1 -
(i) (H ;z% ]aio = ;E |ai| , for l=r < o,

a variant of the H6lder’s inequality.

(ii) la+b[q = Cq(]a[q+ [blq) , for 0<q<ow (3.1.10)

where C_ = max(1,2971). Note that q < 1 is allowed [

n-1
(i11) P (x,y) = = izg olx,,y,) = Cq{pn(xn,zn) + Dn(zn,yn)}.

=
=
| =

23



The inequality is obtained from the triangle inequality on

d(-,-) and (ii).

n n,r 1 1 T 1 -l r
Gv) (e 7,y )" = (2 120 Plx,¥0) = 3 i?o P(xy,y,)

This is the same as (i).

Observe that

E npn(xn,yn) = Hén)(a,g) + pn(xn,yn)dpn(xn,yn)
D G,
where

6, = (&, 60y = 1V @8]

One obtains

[ op My Gy = Ep (e (X7, YD1 )
Gn n
= '{E*npn(Xn,Y )r}l/r g y ¥/r-lyr-1/r (Hé1lder’s inequality)
P P n
-1
= (E [C {p (X“,a*n) + pn(a , Y )}]r)l/r an e /x (by (iii))
PP 4 n R
T n *n.r *n n.r,.l/r r-1/r
= [EpanCr{pn(X 2 ) +pn(a Y] (Epann) (by (ii))
* *
< [E Crcz[p (Xn,a*n)r+pn(a*n,b n)+pn(b n ¥ ny }Jl/r 1, ) (by
pn ar n P n (iii))
n-1 n-1 *
< [E A ox ,a) I 5 e e DT
= nqr il i 1=0
) 1 ?i; p(b*n Yn)r}]l/r(n 7 )r~1/r (by (iv))
n ?
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Il

r 2 *_ 1 * ok op * r._ 1/r r-1/r
[CquEp{D(XO,a ) +p(a ,b )+ p(b ,YO) 1] (Epann)
(by stationarity)

) * * ok "
e o /r{2p w0’ b )r}l/r(E 1 ¥ 1/r
= q r n G
p n
r-1/r
= K(E an )
P n
n -1
= xS @,
where
* ko
K = cc2T2e's pa’, 0 1% [0,)
qr
is independent of n. Now
e ‘ -1
5,@,8 = 1 @,p) +K{H;n)(06,f3)}r o
was obtained. Moreover,
r-1/r

pE,p) = T, (@,8) + (T, @,p)]
because K 1is independent of n. []

1f either Proposition 3.1.2 or 3.1.3 hold, we have T_ = T_ from
P I

P
Corollary 2.4.5 and Proposition 3.1.1. In Proposition 3.1.2, a nonsymme-
tric alphabet distortion is included provided it is uniformly bounded.
In Proposition 3.1.2, the boundedness is replaced by a weaker condition:
the existence of reference letters. The alphabet distortion must be
symmetric, however, since pP(-,-) is a power of a metric d(-,:). We

note that p(x,y) can be , /[x-y| if equation (3.1.7) holds for an

appropriate r.
25



As an immediate result of Propositions 2.3.1, 3.1.1 and 3.1.3, one

obtains:

Proposition 3.1.4: Let QRCZ PR be a class of stationary Gaussian

processes whose variances are uniformly bounded. Then the following

equivalence holds:

_ _ 2
Hp(a,a) o= plap) = lk/ﬁjfh) —,Jfg(K)H &

n n 1 n=l 2
where pn(x Y ) = % E}olxi—yi' and Haady R.

Proof.

Choose d(x,y) = ’X—y[ , =2, r=2 and a =b =0 in
Proposition 3.1.3.
Other properties on the topological equivalence of process distor-

tion measures are:

(1) E(a,ﬁ) <= ECQ,B) <= ﬁg(a’ﬁ) <= ﬁd(a,ﬁ) because

dH(X’y) = 4(x,y) = |a/2] dH(x,y) , and equations (3.1.2) and

(3.1.6) hold.

n

(ii) s(,B) = d(a,B) which follows from sn(xn,yn) = dn(xn,y ).

Therefore d = s.
(111) s(@,p) <> I @,p), t(@,p) <> T (@,p)
because
(M@,m)’s 50,8 = 2l _(a,B)
and
{ﬁt(a,ﬁ)]z = %(a,ﬁ) = {1+max(u,v,w)}ﬁ£(a,5)
hold by virtue of Propositions 3.1.1 and 3.1.2.
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3.2 SPECTRAL DISTORTION MEASURES

3.2.1 General Comments

In the previous section it was shown in the Gaussian case
that E and Eﬁ are equivalent to a distortion measure on spectral
densities.

Such a spectral distortion measure is a kind of a process distor-
tion measure which depends on the processes only through their second
order properties. Spectral properties are often all that is needed for

signal processing in practical cases.

We consider a class of spectral densities:
N o= {10 =z 0, ||, <=, [|1/1]]; <} . (3.2.1)

1/f ¢ L is assumed to ensure finite average power in inverse filters.

1

Note that for f g9, f and 1/f 'have both causal moving average and

autoregressive models since from Jensen’s inequality [30]

. 1 % 1

f log T dv = log {f m dv} < » ’
-7t -7

It s

[ log £(M)dh < log{ [ fAM)dA) <

-7 -7

Let [R:MQ’X] and [R,pﬁ,Y] be two stochastic processes having
spectral densities £(A) and g(A) which belong to the class %.

The autoregressive representations are

o
[0
= = 3.2.2
. Z}aan_k+ 0fg‘n ; ? ( ?
k=1
S B
Yn = - k?l kan—k+ o) g§ # 5
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04
where [gn} and {gﬁ} are independent and identically distributed
processes with zero mean and unit variance. Their spectral

densities are

iA
1) = [f e ?
, (3.5 4)
with
i\ i\
£ ™) = Uf/A(e1 )
where . @
A(elk) = 7, alz—k ; 8y = I
Ry o
and
iA
g = |ge™™]z2
with
iA i\
g (e = Og/B(el ) €3.2.5)
where
R o]
Bty = 3 bkz_k i Bp=
k=0

A common class of distortion measures on 97 Lp is that of differ-

ence distortion measures of the form

att,e) = |e-f
where ¢:(-=,®) 5 [0,0), (0) = 0. Usually ¢(|x|) is assumed to be
nondecreasing or convex [(J. An alternate class has the form

a’ (£,8) = || f-g|p)

and is called a norm-difference distortion measure.
Most spectral distortion measures appearing in speech signal
processing literature, however, are not of the above form. Instead

they are ratio distortion measures having the form
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dp(f,g) = HCP(f/g)Hp

with ©:[0,0) 5 [0,0), ©®(1) = 0. The subscript ¢ will often be
replaced by a mnemonic. We can also have a norm-ratio distortion measure

of the form

da’ (£ = £
5 (2,8) o 2/¢] )

Variations on the ratio distortion measures that occur in speech
processing are the gain-normalized and gain-optimized distortion mea-
sures. The gain-normalized distortion measure is given by

_ f g
dnm(f’g) - d@ ( 27 2)
Uf Gg

Several important spectral distortion measures may be expressed as a
weighted sum of gain distortion and gain-normalized distortion
measure. This property is computationally advantageous. A gain-
optimized distortion measure has the form

o i 2 g : f g
d (f = 1inf d £ —= = inf d —, =

2 o]
o >0 Ug o >0 o g

If the infimum is a minimum, the optimum gz is denoted by 03 and
called the optimum reproduction gain. The gain optimization is done

for one of two reasons. First, we may ighore the original gain of a
reproduction symbol and replace it by a gain chosen to minimize the given
distortion measure. Second, by removing dependence of d@ on a repro-
duction parameter such as the gain, it allows us the freedom of using a

different distortion measure on the gains. Since q@(f,g) = do(f,g),

¢
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Corollary 2.4.5 implies

Q
4,(,8) = (0

It is often useful to symmetrize distortion measures so that the

distortion between f and g is the same as that between g and f.

Given two spectral ratio distortion measures, d,(f,g) = le(f/g)Hp,
dz(f,g) = H@z(f/g)”p, we can form a new distortion measure d(q)(f,g)
by
(a) 3 q a,1/q
e = (o G ]+ og (/)| )

for q= 1. Alternatively, we may form instead

* 1
d (f’g) = 3 ”q)l(:f,g) + q’)z(f,g)“p ’

where the 1/2 1is used for convenience. Note that one obtains

*
d <= d(q) o= d(l) for g=1 (3.2.6)

by use of

a% + b1 = @m? = 2L (3.2.7)

for a, b= 0, q= 1, where the righthand side is a special case of eq.
- ) (a) *
(3.1.10). Equation (3.2.6) states that d (f,g) and d (f,q) are

topologically equivalent symmetrizations.
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3.2.2 Examples of Spectral Distortion Measures

In this section several examples of spectral distortion measures

are discussed.

1) p-Spectral Distortion Measure

I
1 PRp— — 2 — .2
dp(f,g) = "2";_£ ‘ N/f(?n)—\/g(?t)[ d\h = lw —,\/g HZ . (3.2.8)

This is a E—distance with a square-metric alphabet distortion

under the Gaussian assumption.

2) Itakura-Saito Distortion Measure

d (£,8) = |£/g - 1 - log(£/g)|; (3.2.9)

This is a ratio distortion measure with ¢(x) = x-1-¢n x = 0. This
distance was introduced by Itakura and Saito [247], and has the property

that for fixed £ and a class

- _k\, 2
n b (ten, £ W=2m/| T a e

k=0 mk s amO:l}

the spectrum fme Wm which minimizes dIS(f,fm) is given by equa-
tion (2.2.3). Itakura and Saito also showed that if the underlying pro-
cess was assumed Gaussian, then, the maximum log-likelihood approach to

waveforms [227 led to the minimization of d In Section 4.1, it will

1s°
be seen that 2dIS(f,g) is the I-divergence rate of two stationary Gaussian

processes. That is, for two Gaussian processes [R’“a] and [B,MB],

. 2
dIS(f’g) = lim = IN(Q|B)

where
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D, (2"
N

nlp) = [ azp zMlog
pB(Z )

A detailed explanation is relegated to that section since this problem is

related to predictor mismatch. We note that

2
1 a
1 T T
dIS(f’g) = 9% r 5 dr-1-log —=
-7 g
g
2
Og
= el N e '2'
rf/g(o) 1-log 52 (3 10)
g

where rf/g(o) is the corresponding integral or the autocorrelation of

the process with the spectral density f)/g(r).

3) Itakura Distortion Measure

TV
d.(f,g) = log == — dA
. ) |, g O /o>

&

2
o]
= log {—=r_, (0 . (3.2.11)
Of
This distortion was introduced by Itakura [25] as the gain optimized

Itakura-Saito distortion, that is,

0]
d (£,8) = dj (2,8

In this case, the optimal gain is gi = U; rf/g(o). The Itakura distor-

tion is a gain-normalized norm-ratio distortion measure with m(x) =

gn x for x= 1 since

d,(£,8) = log ||



4) Model Distortion Measures

There are two classes of model distortion measures: non-

causal model distortion measures and causal model distortion measures.

The noncausal model distortion measure is defined by

2 — 2
d (e = || /i - 15
+ o, & 2
= | 15787 - 1l
N ST S Y 1C5 B, (3.2.12)
T /g 2n _£ g(A) ’ T
This is a ratio measure with @(x) = ‘ M% - 1‘. Since a new input to

i\ i
the associated digital filter |f (e )/g (e )| affects the past
outputs, the word "noncausal” is used. On the other hand, the causal

model distortion measure is defimed by

2 + , + 2
a_ 07 = |f/g"2
T s T oA, 1A
=%If—g%%d?»—2l{e {:—2% %dex}u
o B -1 g (e )
9¢
= rf/g(o) - 2 E; + 1 . (3.2.13)

o .
In this case, an input to the digital filter £ (e’ ¥2et 6T  doss hot

affect past outputs.

We also have a gain-normalized model distortion measure:
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2 2 2.2
dncm(f,g) = dcm(f/cf, g/ag)

f+/gf 2
= Y ~ Hz
g /a,
9
g
= £, (0 -1 ) (3.2.14)
I

From (3.2.11) and (3.2.14), one obtains

H

dI(f,g)
e -1 . (3.2.15)

2
dncm(f’g)

The gain-normalized causal model distortion measure was introduced
by Itakura [25] as an approximation to the Itakura distortion measure

for small values:
d (£ )2 ~ d_(f,g)
ncm 28 — I &

The distortion measure dncm has the property of the Itakura-Saito
distance that for fixed £ and the class %m’ a minimum distortion

ill ha the f f (A) = 2/ A (eik) 2 h A is th
g e %m wi ve e form - = Qg ‘ n 1 , Wwhere - s e

2

same as that of the dIS minimization, but g is arbitrary. Chaffee
[26] used the gain-normalized causal model distortion measure in his
rate-distortion approach to select speech models from a finite codebook
of monic autoregressive filters. Chaffee used an alternate criterion

on the gain. Note that one can also consider a gain optimized causal

model distortion:
2
aS A 5)° = 1 -—2B = i1-g (3.2.16)
cIm
In thi e . (0)/
n is case, o, = ogrf/g Tpe
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5) Ll Spectral Ratio Distortion Measure

This is a spectral ratio measure with o(x) = |x-1].

7t
1
dl(f,g) = 5= _£ | £V /g(A) - 1] ar
7 3 £OV)
- rf/g(O) o= _£ m1n~{g(K), 1} dv+1 . (3.2.17)

All of the preceeding distortion measures are nonsymmetric except

for dp(f,g). We next consider several symmetric distortion measures.

6) Log Spectral Deviation

dlog(f,g) = Hlog(f/g)“p (3.2.18)

This is a spectral ratio measure with ¢(x) = |gn x| and is one of the
most frequently proposed distortion measures for speech [27], [28], [29].
Common choices for p are p = 1,2 and . Note that dlog(f,h) =
dlog(f,g) + dlog(g’h) so that dlog(f,g) is a metric distortion
measure. on 9.

The remaining measures are all symmetrized versions of measures

2)-5). The simplest and most useful method of the symmetrization in

Section 3.2.1 is chosen.
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7) Cosh Distortion Measure

dcosh(f’g)

Il

*
dIS(f,g)

3 I /76 - J&7% |

\v]

= g llrg @ -2+ x O,

d(l)(f

s (£, ' (3.2.19)

o] =

This is simply an algebraic mean of dIS(f’g)’ and was introduced by

Gray and Markel [27]. The name "cosh" comes from the relation:

dcosh(f,g) = | cosh{log(f/g)}- lHl

This measure has some interesting interpretations. In statistics,
detection theory and information theory [15], [16], [17], one often uses

the symmetrized J-divergence defined as
I, @B) = T(@[p) + T (B[ :

Then, we have under the Gaussian assumption [197, [21]

1l

{dIS(f,g) + dls(g,f)}

n =

Iy (@B

. 1
lim T

N._.)OQ

I
o

(f,g) .

cosh "’

The second interpretation comes from the S—distance. Equation

(2.3.8) of Proposition 2.3.1 gives

a . (£,8) = 3 p(/B, B/O)

cosh 7’

ik bo and MB are Gaussian measures. Here “QVB and MB/@ denote
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the measures of the output processes of mismatched inverse filters. The
mismatch of inverse filters is explained in detail in Chapter 4. Further-
more, if the variances of the Gaussian output processes are uniformly
bounded, this is equivalent to ED(QVB, B/Q) by virtue of Proposition

3.1.4. We emphasize that even if the processes are not Gaussian,

pa/B, B/A) = d (f,g)

cosh "’

o=

holds according to Proposition 2.3.1.

8) Gain-Optimized cosh Measure

From

2 2 1 2,2 2 .2
dooep(s0 g/Ug) = 3 {(og/d Yr, (0)-2+(o /Ug)rg/f(o)} ,

/g

one obtains the minimizing gain

2 1/2
= 0
T, {rf/g( )rg/f(O)}
yielding
(e] 2 2
d,oap (£,8) Ao (11068707

/2 /2
I‘ —_—

1 1
= z{rf/g(O) g/f(O) 1} . (3.2.20)
9) Symmetrized Itakura Distortion
* 1
dp(f,g) = 35 {d;(f,8) + d;(g,D)]
1
= Elog[rf/g(O)rg/f(O)} : (3.2.21)

Note that
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o
dcosh(f’g) -

d: (£,g)
3g
2 {e 1 —1}

10) Symmetrized Model Distortion

1l

(a)
dc (f,g)

m 2

(a)
dncm(f’g)

and

(a)
dm (f,8)

]

Note that if g = 2

b

e

2
m (£,

1l

with the equality when oy

(15 -2+

d
g 2

a® 2/5%, /6%
cm T g

3
g

C-a )

1/q

(3.2.22)

(3.2.23)

(3.2.24)

Cll /278 -1 |1+ | JeZE - 1 )2 1% a.2.25)

| JE7& -1 |12 + || J&7E 1|5

p(a/B, B/B) + p(B/a, 0/0)

and MB are Gaussian measures.

11) Symmetrized L Ratio Distortion

1
1
oM e,e) = o7z - 1+ [e/e - 1
= |l£/8 - ez,
which follows from |x—l‘ + |1/X—1| = |x—1/x| for

1

x> 0.

(3.2.26)

Many other distortion measures can be defined by the combinations

in Section 3.2.1, but the distortion measures listed above are the basic

distortions considered here.
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3.3 DPROPERTIES AND INTERRELATIONS OF SPECTRAL DISTORTION MEASURES

1) Separation of Gain

Several distortion measures can be expressed by the sum of the

gain-normalized distortion and the distortion on two white processes

2 2
with the same gain as f and g, i.e., gf and Gg
We have
» 2
o o
2 T £
d m(f,g) = — d (£,g) (— - 1)
o)
g g
2
= de { £ )2 d (2 2)2 (3.3.1)
= 62 i ,E) + i gf,og 5 B
g

o g
2 f £
= = = Tellopg ==
d S(f,g) dcm(f,g) + 2 (G og - )
g g
2 2 2
o o o
£ 2 £ £
= 3 dncm(f’g) —'é' —1—-10g-—~2-
o o o
g g g
2
Of 2 2 2
= ;5 m(f,g) + dIS(Gf,Gg) (3.3.2)
g

One also obtains from (3.2.10) and (3.2.11) that

2
drg (£,8) dp(£,8) + dpgla,0,) (3.3.3)

(6]
2
here 52 = gz T (0) minimizes d g— over Other gain
A o g f/g 2 g G ) B
g

separation properties are

2 2
ag o
£ 2 g 2
dcosh(f’g) - 2 dncm(f’g) F 2 dncm (g’f)
2qg 2g
g £
2 2
+ dcosh(cf,cg) (3.3.4)



and

2 g 2
dlog(f,g) = d 5 +d, (o,,0) . (3.3.5)

When the distortion between autoregressive models is calculated,
equations (3.3.1)-(3.3.5) are important. This is because the gain
term and the spectral term are separated and we only need to make
subroutines to calculate the gain-normalized spectral distortion mea-
sures. Equations (3.3.1)-(3.3.5) imply that dcm(f,g) = dcm(gi,gz),
dIS(f,g) = dqg (gi,cZ). These relations are called the innovations

property [217. Note that, from (3.3.1) and (3.3.2), one obtains that

Il

2 2 2 2 2.2
dIS(f,g)—dIS(af,cg) dcm(f,g) —dcm(af,dg)

2 =z
4 on(£s8) : (3.3.6)

Q I Q
m ol o

This meang that the additivity removing the innovations distortioh

2
makes d and d __ the same.
IS cm
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2) Cascade Relations

Consider three spectral densities f(A), %(k) and gm(k} where
f(A) 1is considered as an original spectrum, %(k) a reproduction of f,
and gm(kj is any mth order spectral density. A useful property of some
distortion measures in communieation systems is that small distortions
d(f,%) and d(%,gm) imply small overall distortion d(f,gm)_ For example,
metric distortion”measures such as dlog have this property. dIS(f,g)

2.
and dcm(f,g) also have this property in the special case considered

next.

N th
Proposition 3.3.1: Let fm(h) be an m order estimate of f(\)
obtained by Levinson’s equation (2.2.3), i.e., by the minimization

th
of d... Then for any m  order spectrum Gm(h) of the form

IS g
2 e . B
= /|B (e
g, (\) o,/ | B, (e )]
with
- Kk
Big) = 2; b g , b.=d1
m k=0 mk mO
we have that
£ a_ (£,%) + d (2 (3.3.7)
= + . e b
dyg (£,2,) IS m 18 Ty 8p)
If ¥ &9 is an estimate by the minimization of a® | then
m m cm
2
o
2 _ 2 f £y 2
dcm(f’gm) - dcm(f’Tm) " 2 dcm(fm’gm)
g, (m)
£
< d_(£,3) 1 a_(F e )% (3.3.8)
= cm cm i
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Proof

2
T o
) 1 f(A) f
TR - s Lo & -log —
(1) d(£,8) e ‘fg o dv - 1 & —
=70 M o
g
N 2 2
1 = T ) o.(m) g_.(m)
= — X dv. - 1 -log o +log =
27 _£ gm(k) 2 2
O'g O'f
s e
= dpg(f g+ dp(£,5) ’
where (2.2.3) was used.
~ o2

~s 2 th
(i1) Let £ () =g m)7/[A be the m order spectrum which

-
¥
yields the minimum of d_ (f,g ) Then Km satisfies Levinson’s

equation because of (3.3.6). Then

2
o (m) g
~ 2 i
a_£,%)° = -2 L. 53
o_(m) o_(m)
f f
2
O
= L o e
(m)2
Op
g 2 o o ~ :
since g (m) = g.(m)" /g minimizes d _(£,f ). Using the above rela-
¥ £ £ cm m
tions, one obtains
1
d (f,g) = 5= [ £/gdh - 20./5,,+ 1
-7 £
2 2
L j‘E % [Pl an - 2¢./ i
= s e - 20, /0 +
21 2 2 £
- |AlT o &
g
2 2
1 n g (m) |B |
= — F 3 = dv - 20 /0 + 1
27T . ~ 2 2 T
- |A | o ¢
m g
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2
Uf(m) 1 T
L f f /egdh - 20 /06 + 1
g m m g

5 5=
o (m) i
¥
2 2 2
g.(m) g.(m)" gel(m) g (m)
f ~ £ ¥ f
= 2 dcm(fm’%3 ~ 2 2 g - 2
o_(m) O (m) g o_(m)
£ £ gl
o
- 2 = + 1
o
g
2 2
o 5 Uf(m)
= d (f,g) +1 -
2 Tem W T 2
0 (m) g, (m)
5
2 2
] o
~ 2
= 1 - £ = d (F )
(m)2 (m)2 cm m’%]
O Of
GZ
2 £ ~ 2
= dcm(f,fm) -4 5 dcm( m’%g
g .(m)
£
~J ~ 2
< d (£ % )2 +d (£ ,g) . D
cm m cm m’p

The main significance of (3.3.7) and (3.3.8) is for the quantization

N ~ 2
or coding of the model spectra £ or £ . Under d or d ,
m m Is cm

~ Iy,
the spectrum g which is obtained by the quantization or coding of f or tm

is still close to the unknown original spectrum f provided dIS(§m’%3
o~ 2
or d (f ,%3 is small. This property is desirable for the codebook

cm m

design of Section 5.1.
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3) Topologies Generated by Nonsymmetric Distortion Measures

First we have
3.3.9
d, (f,8) = dnm(f,g) ( )

+
because |1 /g | = £ /¢g'. Hence d = d_ = d . Next by the fact
- cm cm nm

that x 5 1 = x-1-gn x » 0, we have that dcm(f’gn) - 0 implies

dig (f,gn) - 0, because d_ (f,g) - 0= |gf/ggn—1| 50 = gf/gg a o=

1og(gf/gg)a 0. Thus d__ «==d = dnm is obtained. We have from

IS cm

y

o
(3.2.15) and (3.2.16) that dncm <= dI <=> dcm because e’ - 1 o

0<= 0 <y 0<= 1-e 5 0. One obtains from (3.3.1) and the

innovation property of dcm that

2 2
2 < 2 dcm(f’g)
d (£,9)°= 24 (£,9)° =
nem = 2 cm = (1-d_ (2 )}2
O cm 2
which implies d = d . One more implication is that d. = d
cm ncm 1 nem
2 —— 2 o
because dnm(f,g) = || /& —1||2 = Hf/g~1”1 by virtue of |[x-1| =
- 2 - B
|/Jx —1| . On the relation of p-distance,
4 (£, pla/B, B/B) (3.3.10)
on(Ei8)T = PR, B/B .3.
is obtained by Proposition 2.3.1 where 5 uses ' square difference

distortion and Y are the probability measures of mismatch inverse
filtered and white processes respectively. A detailed explanation of the
inverse filtering is relegated to Chapter 4.
o ;
t ; : ; . _
On the coding equivalence, one obtains dncm <= dI <:>,dcm since

they are monotically related by (3.2.15) and (3.2.16).

We have proved the following propositions:
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Proposition 3.3.2: The topological and coding equivalencies of non-

symmetric distortion measures are:

= d = d
dcm <= I <= ncm

where P means p(a/B,B/B) as in (3.3.10), and

d = d. < d°
ncm I cm

4) Topologies Generated By Symmetric Distortions

The cosh measure and the log spectral deviation are the most
commonly used symmetric distortions. Their relations to other measures

are here developed. First one obtains

2
d) o587 = 2d__ . (1,g) (3.3.11)

by simply comparing the integrands. Equations (3.2.13), (3.2.19) and

(3.3.9) yield the following chain of inequalities:
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2dcosh(f’g) - I.f/g(o) = rg/f ~ &
2 2 -
s dcm(f,g) + dcm(g,f) + 2(1Jgf/gg —,Jgg/df)
2
(2) 2
= d_ (£f,2)" + QQJUf/Gg —,Jdg/gf )
(2) 2
= d_ (8
(2) 2
= dnm (f,g) ) (3.3.12)
(2) (2) . . L
and therefore d = d = d . By the Minkowski inequality and the
cosh cm nm
parallelogram law,
2a__ (2,012 = ||ji7e- Ja/x 75- 1| +|/e7E- 1]
( dcosh &)} = HJ g~ Jg Hg = HJ g oTIWE 2
D) = (2) o
= % (1,8 g wh dnm (£,8)

Combining the above inequalities, we have that

1 .(2) 2 1 .(2) 2 (2) 2 (2) 2
S i e = od (8,8 = dcosh(f,g) = (£,8)" = d__ (f,g)
. " (a) (a)
which yields dcosh <= dCm <=> dnm for q = 1.

By an-analogous way to the development for nonsymmetric distortions,

the following relations are easily obtained:

o *k

d =

cosh(f’g) <= dI(f’g)
and

o o (2)

dooep(£:8) <= di(f,8) <= d__

: 2 : * (a) (a) (a) (a) (a)

Other implications are dI <= dncm’ dcm = dnm and dl = dnm
which are obtained by dI <= dncm’ dcm =Y dnm and dI = dnm’ respec-

tively. On the relations of p-distance to spectral distortion measures,
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we have

(2) (a)
nm Tt dnm

d <= P(a/B,B/A) <= p(/B,B/B) + 0(B/0,0/0) = d

cosh y

where the implication between the p-distances are obtained by the

2 2 2
parallelogram law: (x-z) = 2{(x-y) +(y-z) }. To summarize we have:

Proposition 3.3.3: The topological and coding equivalences of symmetric

distortion measures are:

p(a/B,p/a) <= pQ/B,B/B) + P(B/a,0/0)

i
A
g T (@) d(q)“<_ 4@
log = Uepan = gy T Mg = %
U
-~ ¥ 5
a° <> d = d(q)
cosh I = necm
and
° a a(®
cosh = I = ncm

In addition to the above relations, all symmetrized distortions

are stronger than their unsymmetrized versions.

5) A Condition for Topological Equivalence of All Un-normalized

Spectral Distortions

In Propositions 3.3.2 and 3.3.3, the topological implications
by distortion;-measures of the <class 7.1 of spectral
densities were considered. One might pose a question: How large a
portion of the class of spectral densities will be lost if we require

the topological equivalence of all original spectral distortion measures
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within a subclass?
The following proposition provides sufficient conditions for such

a subclass. Uniform integrability [307] is the key for the equivalence.

Definition 3.3.4: A class of functions {h@(k), @ €A} (M e D where D

is the whole domain) is uniformly integrable if

(1) £|h@40\)[d?\ <= K <€ o for all Q € A

and
such that for EC D

0 there exists B(e) > 0

?

(ii) for all € >

ANE) <8 implies [ [ha(k)ld% < e for all «a e A
& !

S be a subclass of 7 such that the class

Proposition 3.3.5: Let 7]

1 1
[Eed 7?( )] W tisfs £ 7?( )}
is uniformly integrable. Then, for spectral densities of the class
the topologies generated by the following all distortion mea-

1
n,

sures are all equivalent:

(@) (@) (a)
d d d d d d
IS’ "em?’ nm’ 17 Tp? d1og’ cosh’ dcm ’ T nm and d1

for q= 1.

Proof.

Since the proof consists of repetitions of the same arguments, only
(1)

Y

one case dp = dnm is shown to see how the conditions on the class

are used.
Let f(A\) and gn(%) be elements of %(1) such that
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—_ _2 .
dp(f,gn) = |l/£ - Vgn”Z 50 as n _ ». Then §> 0, there exists
. . = i
N, such that n= N, implies A(]/f —ngn‘

1 > §) < § because Ll—

convergence implies the convergence in measure [307]. Define the set

= —2
F= (A:|/f -./g |" > 6). Then for all e> 0 there exists N, such

2

that n= N implies

2

2 1 T 2 1 e 2
d (£,8)° = o= [ |//g - 1]"dh + 5 [ /E7g, - 1|7dr

167
F

A

—_— 2
g 4 ;—ﬁ r Wf/gn - 1| 7dr
F

[2 . c.

by the uniform integrability. Note that L/E - JE; =§ in F

e 2
Then |/f/g - 1|" = 6/8, A-a.e. Therefore,

2 1
dnm(f,gn) = €+ § 5— — dv = € + §K

Since § <can be taken arbitrarily small for large n, dnm(f,gn) - 0
as h 5 . Hence dp = dnm' Other implications are proven under minor

modifications of the above method. []

We note that

(@D (2)

n D7 = (f(\):0 <« K1 = TA) = K, < o)

6) Approximation of Small Deviations

Several spectral distortion measures have linear relationships

to other distortion measures when distortions are small.
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iA

i iA +
Proposition 3.3.6: It f+(elk) ~ g+(e1 ) where both f (e”) and
g+(e1k) are stable causal filters, then the following relationships
hold:
(1) d. (5,22 ~ 24 (f,8) ~ 4d_ (f,g)? (3.3.13)
log " ? - Is"? = nm -’ 2
2 (2) 2
ii - ~ 2 3.3.14
(1) dy (5,87~ 2d ) (£,8) ~ 2 T(f,e) ; (3.3.14)
2
r g L2 0 4 ne .
(iii) dlog ( 5 2) :2dncm(i,g) ~ chm(i,g) . (3.3.15)
U;E Og
f g 2 (2) 2 * o
i —_—, == o ~ 2d ~ d f . 3.3.16
v a (5 2) e (2,6)% o 2a (£,8) ~ % (£,8) . ( )
0 Ug

Proof.

(i) +£/g - 1 -log(f/g) :elog(f/g)_

1 £\2 _
1 -log(f/g) ~ 5|1log e which
is obtained by the Taylor series expansion of the exponential. The right
equality is obtained in the same way.

(ii) This simply follows from symmetrization.

(iii) The leftmost equality comes from:

. (L g\ _ 4 [ 1 \®
2 2 - ! 2
log op © log ‘A‘2 |B|
g
7
1 2. 2

7T 2 b1
1 B 1 B, 2
= EE _£ (1og K) dhv + 2- E __:JE |1og K! dh



7t
= 22 [ |lox 2|7 ar

where the last equality tollows from the fact that the other terms are
equal to zero. This is because the summation of the first and third terms

which are conjugates of each other must be twice the real part, which is

zero since A and B are monie [31]. Furtnermore, log (1+§) ~ § gives

1
T, EL _ gk ( B_-é)fz
Yo | 2 z) = 252 [ [log |\ 1+ ) [T
0s O -7
s g o
zol‘._. _B.:.éz}\l
= 21 Lr | A | d
-7
2
- Zdncm(z’g)

Other equalities come from (3.2.15) and (3.2.16).

(iv) The result easily follows from tne symmetrization of (iii) and

(3.2.22).

Proposition 3.3.6, which was obtained by simple calculus, has an
important implication: When these spectral distortion measures are used
in small deviation cases, all give nearly the same result. We checked
a few relations in Proposition 3.3.6 by obtaining scatter plots from
actual speech: "The pipe began to rust while new," spoken by a female and,
"Thieves wno rob friends deserve jail," spoken by a male. Figure 3.3.1
compares several distortion values. The computation methods are explained
in the next section. The degree of coincidence, i.e., the linear rela-
tionship depends upon distortion measures. The bifurcation of Fig. 3.3.1

’ 2 2s. . 2 2.2 .
arises because dIS(gf,cg) is a function of + dcm(af,gg) . That is,
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2 2
dIS(Uf,Ug)

2 2.2 2 ! 2 28
{1+ dcm(ﬁf,qg) J —1—10g[lidcm(cf,cg) }

And the gain separation properties explain scattering around the gain
curves. Figure 3.4.1.d 1is the most important one, since the approx-
g

f
imation of dlog(_z’ _E) by dncm(f,g) is frequently used because of

Op Ug
its computational advantage. This is used in the quantization of
reflection coefficients [317]. Gray and Markel [27] suggest that 2 dB of
dlog is the barely perceptible difterence limen, where 4.54d10g gives
the dB scale. Figure 3.3.1d shows that within the limen, the two dis-
tortion measures are linearly related. Therefore, the quantization of
spectra using both measures is equivalent in the coding sense in that

region.
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3.4 Computation and Related Matters

There are two prevalent methods of estimating spectra from time
series: direct computation by FFT and indirect computation from
parameter estimation of AR models. The first method is useful for
hardware such as a spectrum analyzer, but it takes considerable calcula-
tion time if computer software is used, and the entire spectrum needs
to be stored. Moreover, FFT produces a very noisy spectrum. The second
method may take a longer time than the first, but it has a software-
computational advantage and saves memory space when a specific set of
spectra is used as a reproduction class. It turns out that the model
estimation method fits our laboratory experiments which mainly rely on s

software. In what follows, a minimum necessary discussion on computa-
tional aspects is given.

1) Minimum Variance Versus Total Residual Error

Since only a sample path is given, a method using the mathema-
tical expectation E(*) cannot be used. Instead, assuming ergodicity,

we make use of the relation

n_+N-1
m 5 1 0 m 2
ECYL b Y )7 = 1lim y= 5 (2 Y
k=0 " B-K I n=n, k=0 e w0k
so that for large enough N we should have
) n0+N—1
Ble) ~ 5% & () : (3.4.1)
n:no

nO+N—1

1 ;
Using X 2, () instead of E(:), an estimate of autocorrelation
n=n
0

sequence {rf(k)]ﬁ_o is obtained [35]. By solving (2.2.3), an mt?
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order AR estimate fm(h) of f(A) is obtained. There is another
method called recursive estimation [32], [33] which sometimes

gives a better estimate of f(A) since the method is an unbiased estima-
tion. However, if a relatively small number of samples are treated as in
speech applications, the method needs a great deal more computation-be-

cause of the recursive, sample by sample operation.

2) Computation of the Normalized Causal Model Distortion

For two polynomials C(z) and D(z), the inner product is
defined by
Ui 0 e ik)u*( il)
(C(2),D()), = 5= [ ——m— A (3.4.2)
2 £ 21 . ik, 2
-7 ’A(e )|
2 9. 4 2 2 -k
for £ = o /[AGT)[T, A = X az with a, = 1. Then
k=0
id i 2
2 B(e'")-A(e™)
dncm(f’g) = iA |
A(e ) 2
1
= e (B-A, B—A)f
Ie
2 2
BN - XAE) ¢ A
- 2
Of
2
122
= — -1 (3.4.3)
A 2
1)
since
_ _ 2 2
<A,B>f = <Asl>f = <A:A>f = HAHf = Gf
by (2.2.8). When segments of time series are given, this is
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calculated using the correspondence (3.4.1). 1In that case, we have

(b-a) TRf(}g;g)

2
dncm(f’g) - T

a R _a
5 Sl

m

%{ rb(n)rf(n)

e el - 1 (3.4.4)

m

75 ra(n)rf(n)

n=-m

where r , r are autocorrelations of {a T and {b 0 . This holds
a b mi i=0 mi~i=0

also for m =« [217]. From (3.4.4) and the gain separation properties
(3.3.1)—(3.3.4), the causal distortion and their relatives are
calculated. The computation of other distortion measures relies on FFT
methods except for dlog' The log spectral deviation dlog can be

approximated by cepstral coefficients [27].

2
4) Computation of dqcm(f’g) from Reflection Coefficients
m

equivalently

Equation (3.4.4) is usable wnen pboth ({a

. and
mi

»

{Tx(i)}?—o are stored in the memory as references (or

a.m

(g

and [rf(i)}?_o are memorized, because there are algorithms

}m

i=1

a
to convert {k_}@a to {a

; and vice versa [207). However,
171=1 mi

{r (i)}m can be derived from using (2.2.6). In order to
£ i=0

(a0}
mi’ i=0
save memory space only tne LPC coefiicients are stored. Because of

the remarkable property (2.2.15), the form of the retlection coefficients

a m

{ki}i:1’

is cnosen in LPC communication systems [20] [29]. In this
2
case, dncm(f,g) is calculated as follows. Since the method essen-

tially calculates the righthand side of (3.4.4), it takes much more

computational time. The following relationships are the basic equations.
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By the definition of [ki]i~1’ we have
a
= A
m-1 ~m
where - . ] &
- ml? m2? ’ “mn
L8y By %n-1 m-1
L ) )
Am~1 = 1 : .
am—l,l
0
S l —
a a, T
= (li !km)
By (2.2.6), one obtains
. rf(O) - rf(m—l)
A . .
m-1 “ . " Am—l Am—l
rf(m—l) s 2 rf(O)
whnere
. 2 m-1
Ayg = BRI f, o
Note that
i
N2 2 a, 2
o (1) = o, (00" T {1-(k.)"}
£ f =1 J

a.m

(3.4

(3.4.

(3.4.

(3.4

(3.4.

(3.4.

2
holds because of (2.2.12) where Onf(O) = rf(O). Finally a formula is

obtained:
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T
(b,-3,) Belb, -a)

2
dncm(f’g) 2
of(m)

-T
A

T
(Em—g-m) m—lAm—lAm—l (rtv)m_rg-l-m)

cjf(m)2

m .
. L 5 (kP (@) -k} 25 (1) 2
¢ . my* 421 * 1" R

i

2 b a2 m a, 2
= Lk @-k]}/ I {1—(1~:j) ) (3.4.12)
i=1 Jj=i+1

b
where k (a) = 18,
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Chapter 4

PREDICTOR AND INTERPOLATOR MISMATCH

4.1 MISMATCH OF ONE-STEP PREDICTORS ON AUTOREGRESSIVE PROCLESS

Linear least squares prediction has a long history and has been made
use of in various areas because of its intuitive principle and the
handiness of the resulting calculations [14], [18], [44]. 1In actual
cases, however, it is rare that the complete statistics of the underlying
stochastic processes are given. A predictor designed without the true
statistics is essentially "mismatched” to the true underlying stochastic
processes. Considering the least squares criterion, one might expect
that the resulting performance would be good enougn if the guessed
process is sufficiently "close" in some sense to the true process. This
concept can be regarded as the robustness of the predictor against the
mismatch.

This mismatch problem can be found in coding and in the recognition
of speech. Therein, several predictors are designed using typical
reference sounds or clusters of time series. Inverse filters which
correspond to each predictor are implemented. The residual processes of
inverse filters with an input speech segment are compared in terms of the
previous spectral distortion measures. If the distortion is
considerably large then the predictor is regarded as mismatched to

the speech. Now, speech coding can be viewed as finding the predictor

bl
which gives the smallest mismatch distortion measure. More consideration
of the above idea will be discussed in Chapter 6.

Let [R,Ma,X] and | Y| be second order stochastic processes

R:Mﬁ:
governed by autoregressive processes (3.2.2) and (3.2.3) of class 7.

We consider the problem of approximating Xn by the linear combination
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of {X .}, say X (X X ...), which minimizes the mean
n

n—l’An—2" n-1’"n-2°

square error:

STk

E|X - X (K 1,5 50
The predictor %n encodes all past values, If the predictor uses only

a finite number of past values remote samples are weighted by zero.
Suppose all past values are stored in an analog shift register in order.
At each time fhe predictor obtains one new sample, and shifts it into the
register, and predicts the value of the next sample. This is an example
of sliding-block coding [1]. The mapping £(*) of equation (2.1.1) cor-

responds to the predictor. It is well-known [13] that a unique solution

is given as

@
cen) == 4.1.
S C. ST S ) 2 aX (4.1.1)

where {ak] are the autoregressive coefficients of (3.2.4), and the

minimum mean square error is

2 2

~
E|X - X (X _,X o,--)]" = o0 (4.1.2)

where f 1is the spectrum of {Xn}. Consider the case where one designs
the predictor based on a process {Yn} and applies it to a process {Xn}.

The mismatched prediction is then

Y (x
¥
n€

o
ne1iXy g e) = = 2 bX (4.1.3)
k=

The mean square mismatch error is given by
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2 ~ >
e@| 8 Ean—Yn(Xn_l,Xnuz,...)[
o 2
= E| >} b X
g ¥ n-
© fos] T
—_ k_
- 3 = bb, %; [ f(\)e ( J?’)7\:517\
k=0 =0 -1t
B S o igN
= > [’ (Ebke Y2 bf}e YEQN) dA
-t =0 £=0
2
= U_g p ) d)\ (4.1.4)
T 2x ;£ g(\) T

There are three kinds of mismatch criteria which are free from

probability densities. The first one is the mean square error criterion:
2 2 2
C, = |e@M- e@|p) |/e@|®) ; (4.1.5)
The second one is the root mean square error criterion:

co = |elo) - e6|p)| /e@]p) . (4.1.6)

Thirdly, one can compare prediction residual processes:

2 A
Co = (XY & 1,8 5,--} - (XX & X o,..)]

2
e(a[a) (4.1.7)

It is easily seen that :—:(6[(}) = E(Oélcc) always holds; however,
ce(@B|) = €(@[p) need not be true.

We define "mismatch-robustness” as follows.
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Definition 4.1.1: A predictor is said to be mismatch-robust under a

distortion measure d if given ¢ > 0 there exists §> 0 such
that d(o,B) < § implies (mismatch criterion) < €.

By (4.1.4),

n T
- Loy i 1 2N
A T I_LL{E;(?\) 1}d7\[ = o _£ oy ik L

= dl(:f,g) o (4-18)
Equations (2.3.5) and (4.1.4) yield
2
CB =
T
— 2
= %E [ vi/e - 1] "an
-7
. 2
= d (e
= p(/B,B/B) (4.7 :9)

where E(Q/S,B/B) means the O-distance between the mismatch inverse

[ee]
filtered process 2, b

X and the true inverse filtered process
k n-k

e B k=0

> b Y 2 e EF Using a similar derivation as (4.1.8), we

k=0 k n-k g7n

obtain

cz—l—?:ﬁ/+ %0 = d4_(t,0° (4.1.10)
C - 2:[[' _,T[ ’ g I - nm yg . a.Lia

Proposition 4.1.2: One-step predictors for autoregressive processes in

the class 9 are mean square error mismatch-robust under d

Root mean square error and residual process mismatch-robustness hold
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; . 2 =
under dnm and dcm’ respectively. Since dnm(f,g) = P@/B,p/B),
the root mean square error mismatch-robustness is guaranteed if

EGﬁ/B,B/B) is small.

The preceeding mismatch discussion provides an interpretation
2 2
for the two model distortion measures, dnm(f,g) and dcm(f,g) . In
K) is either f+(elk

Fig. 4.1.1, d(e" ), which is associated with the

predictor %n(x

K g o[£ e = ZR. we™ 1sa

--)’ or

HLEKtAT BILEeR -either (va o) iaddacisted with X @) . gtle.
n n-1’"n-2’
+, 1A AT . i i
lg" (e”)| =,/g(A\). Figure 4.1.1a 'shows that H@(elk)/y(elk)—lug
measures how similarly the filters & and ¥ behave by'comparing the
inverse filtered spectrum with the white spectrum. On the other hand,
in TFig. 4.1.1b,  1/0 is the whitening filter for {Xn} and 1/Y is a

mismatched inverse filter. It measures the error power between the true

and the mismatch-whitened processes:
2 2
Elw - [ = [ose - 1]

2
That is, the model distortion measure “@/Y—l“z compares the error powers

between the true whitened process and the mismatch whitened process.
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1A)

= 1/v(e') ——

g e Vs

VL

Fig. 4.1.1 Mismatch of an inverse filter
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4.2 INTERPOLATOR MISMATCH

Another important example for the noncausal sliding block structure

is an interpolator, %n(...,X .), which minimizes

X -
n—Z’Xn—l’Xn+l’ n+2’

2

Fal
E|Xn_Xn(" .)|

X X X ..
n-2’"n-1""n+l’ n+2?

In this section, spectral densities of class 7 are considered again.

Here, the spectral representation [14] is used. Suppose

o inA
Yn(...,Yn_l,Yn+l,...) = _i KB(K)e ZY(dX)

Then the projection property [13] gives

b5
, o 1 inA
E(Y -Y )Y = o= i {1—KB(h)}e gMdr = 0 for m # n.
Hence
A = 1 - s
T G000 200
Since
2 1, =
E[Y -Y = 5= L | 1K, V) | g ) dn
2
2n £ g
1 1T
= B f {1- K (W) g ) dh
=11
= C i
one obtains
1
B - (4.2.1)
1 T
o _£ ézx— dA
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and

1
) = 1-
KB g(?&)F 1 ~
2t ) g
The mismatch error is
2 iy 2
6C[B)Y" = E[X-Y (..,X X 0,00
b1
1 £(A)
= ax
2 o
= = 5
1 1
5 vy o
2ﬂ_£ g(A)
Then
. 62@[p) - §°@18)|
A I
L 1
1 1 1) 1 1 £\
‘Zﬂ JEm {g(k) i} dkl 27 | g | g0 -t
= =
1
1 1 bl
= | zoy @ LI QA
-7 21 _J:T g(A) (4.2.2)
2 _ lawlp) - 5618)|°
- 5°®|8)
1 o0 1 T o1 |2 T
- = A - = - o -
’ o | ey 2% | g0 /21{ Loy @
b 2
1 1 f [f0D
2 _£ g(\) { g(A) l} o
= T
1 1
o f FTo) d\ (4.2.3)
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Proposition 4.2.1: The linear least squares interpolators are mean

square error mismatch-robust according to the spectral distortion
measure of (4.2.2). The root meanh square mismatch-robustness is

guaranteed under the spectral distortion measure of (4.2.3).

It is important to point out that (4.2.1) implies that

1
'—""—f(}h) d\ < o

1

27

A A

is the condition for a non-deterministic process for the linear least

squares interpolation, but

17 1

ﬁ_i 10g{m}d7\. < @
is the corresponding condition for the prediction case. Note that the
Gaussian assumption ensures the optimality of the predictors and inter-
polators designed by the linear least squares error principle. Lkven in

this case, Jensen’s inequality

1 % f 1 1 % 1
57 _i log{Eij} dv = log {EE _£ ETe8) dh}

says that a process for which perfect interpolation is possible need

not be deterministic from the prediction view.
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4.3 AN INFORMATION THEORETIC PREDICTOR MISMATCH MEASURE

The prediction error processes played the main role in studying
mismatch robustness. Under the Gaussian assumption, the predictor
mismatch can be measurea by an information theoretic quantity.

Let [R,,.,,X] and [R,MB,Y] be stationary, zero-mean Gaussian

processes with spectral densities f(A), g(A) € 9. Let {Zn} pe an

unknown process: either {Xn} or {Yn]. Define two hypotheses:
N .
qx - observed sample Z is from (X }
n-1 n
Hy, - observed sample ZN is from ¥
5 p n-1 { n-}
where ZN = (Z Z Z ) If a linear least squares one-ste
n-T “"n-N? “n-N+1’"" " ?"n-1"" d B
ict 3 i G 7 ::;T L)
predictor Yn is used under HB, then Zn n(zn—l’ ho2 ) A
mismatch occurs when qx is true since
3 Z £ 3 aw o
Yn(Zn—l’ n-2"’ ) Yn(xn—l’xn—Z’ )
under q)‘ By Bays rule,
p(z |H )P )
P( ‘ZN _ n-\ &4
bl 2 @ 0P ) +p(Z" | B, )P(H,)
4 -\ ql %% H nﬂlﬁg H5
and a similar relation interchanging & and P holds. One then
obtains
N N
D(Znﬁ]}b) P(HCﬂZn-l) P(H,)
log — - = log — log
: Z
p(ZYH\HB) P(Hﬁ1 1rH) P(HB)

The first term of the righthand side is a posteriori information that Hl

is favored, and the second term is a priori information. The lefthand
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side is therefore the information that ql is favored resulting from

N :
the observation of Z f Taking the expectation yields then
-

N N
P(Z ) o p,(z)
log ——lﬂiﬁ%— = I - I D (ZN)log i dZN
N o )
P(%4“% -0 Py z
= 1N(oa|5) , (4.3.1)

where INGI|B) is called the Kullbuck-Leibler number, I-divergence or
relative entropy [15], [16], [17]. Since (4.3.1) depends on N, and
since in signal processing N can often be taken to be large, we
define a predictor mismatch criterion as

% C. = 1lim Nl— IN(oeHB) . (4.3.2)

No o
By the Gaussian assumption one obtains [15], [16], [17]
|R

1 -1 N{
CD = lim ﬁ {trace(RNQN —IN) —10g‘ m—} (433)

Nﬁ%m

where RN and QN are covariance matrices of Xi and Yi. The

following lemma provides a means of calculating the asymptotic value

of (4.3.3).
M, .
Lemma 4.3.1 [18]: Let ({ K ,k=1,2, ... N} be eigenvalues of the NxN
Toeplitz autocorrelation matrices RN = {r(i-j)}. Define
o
ikA
I = Y r(e’
K=-eo
Let
M = ess sup f(A) < o
A
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If G(x) 1is continuous on [O0,M], then

N 7

1in = 2 o™ = L reprooja : (4.3.4)
k 2
N 5 k=1 e

As a direct consequence of the lemma, one obtains

IR | T

) 1 N1 £V

lin g log \Tf = e _f log SO0 dA . (4.3.5)
N 5 N x

1f essxinf{fov)/g(k)] i

() .
=00 dh (4.3.6)

. 1 - 1
lim N trace RNQN = o7
N 5 -

'— 7

is obtained [19]. This yields the following.

Proposition 4.3.2: Tor Gaussian stationary processes of class 7 one-

step predictors are hypothesis test mismatch-robust according to

7

T 10 N 1¢0
¢y T ex _-;_-[[{g(?t) l-158 g(m}d?‘
= dIS(f’g) . (4-3-7)

dIS(f,g) is the Itakura-Saito distortion measure which was

introduced in the Section 3.2.2.

Looking at the list of the spectral distortion measures in

Section 3.2.2, one realizes, by virtue of (4.3.4), that

T N

L awoa

N | )
lim N 25 :P(T]k )

= N o o k=1

]
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(N)_N

where {ﬁk }k:l

are the eigenvalues of RNle. That is, all of the spec-
tral ratio distortion measures are small <=> {ni]i:l are close to

1 <= RNQél is close to a unit matrix asymptotically. This is a general
criterion and applies to dIS(f,g) and dcosh(f,g), where the Gaussian
assumption was needed for the derivation. By the choice of a proper oY)
many other distortion measures can be presented. We note that, in the
case of dp(f,g), square roots of the eigenvalues of RN and QN are
compared by the square difference distortion.

As a final comment of this section, we given Fig. 4.3.1 which shows
the nonsymmetry of the spectral weightings of dl(f,g), dnm(f,g) and
dIS(f,g). The nonsymmetry puts much weight when f(A) 1is larger
than g(A). That is, peaks and an envelope of f£(A) are emphasized

when the order of f(A) is relatively low. This is regarded to be

associative to human perception of speech distortion [22].
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[f/g-1]
______ f/g-1-1og(f/g)

N

Fig. 4.3.1 Nonsymmetric spectral weighting

73



4.4 THE GENERAL CASE OF PREDICTOR MISMATCH

In the previous sections, {Xn} and {Yn} belonged to the class
M. Yor the predictor mismatch probiem, the cléss can be expanded to
the weakly stationary processes which satisfy (2.1.2). k-step predic-
tion can be treated here. For the k-step predictor mismatch, the

mean square error criterion

e, Bl ¢ B[
€1(5|§)2

and the root mean square error criterion

2
e Bl - € @B

2
C =
B 2
e, BB
will be considered. Here,
2 o 2
o = I - X st
Ek(ﬁ[ ) Elxn Yn( n—k’Xn-k—l’ )|

(k)

First, the spectral expression Hé (A) for the k-step predictor

Y (Y

AR ST .) 1is derived following [12] and [13]. Define a

normalized prediction process {gi} by

A p
) = g BB

n n n—l’Yn—Z"'

, , , G 2 ;
The unique solution which minimizes el(B]B) satisfies the projection

property [127, [137:

SEB = § . (4.4.1)

n-m

E(E
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Define a number Ji by

g p
c = E({E D

Now, introduce random variables:

UB= Ecﬁétj ’
n _g mn-m
o= (4.4.2)
P = v -F
n n n

Note that (4.4.2) corresponds to the moving average representation.

Then, one obtains

E(gﬁV'B) = E(UBV‘B) = 0 v m,n
m n m n ?
(4.4.3)
E(gixi) = 0 m < h
Hence
< B = BB
S EE e EL i - o
m=k m=k
Then, the projection property implies
8 = BB
YO ger Ty g quvisd = mz)k cmgn_mwi . (4.4.4)

c : . &
Since {Yn} is weakly stationary, so are {gn}, {di} and {Vi}.

Therefore, the spectral representations [14] can be introduced.
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E|ZU(dh)\ = o GU(dh)

Bz @)]® = L oo @

T
inA B
e ZU(dK)
=17
1
inA B
Vi = [e ZV(dh)
=1
where " ) (4.4.5)
E|Z ()] = S—G(d) §
2
E|Z§(dk)[ = L a
That is, G(A), GU(h) and Gv(k) are spectral distribution functions

of {Yn], {Ui} and {di} respectively, From (4.4.3) and the spectral

representations, one ohbtains

G = GU(K) + GV(K) (4.4.6)
and
i 12

Gy(@) = [¢g(e™™) | “an (4.4.7)

where

; = :
CB(elK) A > cBe_lmK (4.4.8)
m=0 i

The convergence is guaranteed in the mean square since {Ui] is a
second order process. From (4.4.7), GU(k) is an absolutely continuous

part of G(A) and
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g0 = |oyce™|? (4.4.9)

is the spectral density for {di}. This procedure is Wald’s orthogonal
decomposition of Yn into di and ﬁi, whose spectral distribution
functions are the absolutely continuous part, GU(k), and the
remaining part, Gv(k), of G(\). Equation (4.4.7) and the spectral
representations imply that

B

Z () = (e”‘)zﬁg (@) )

%

Since V6 1 UP, one obtains
n n
id B
ZY(dk) = QR(e )Z@(dk) + ZV(dk) .

6 O
Let En correspond to =7(A) 1in the spectral representation, then

4]

B _ =B idy,B B
£, = _i Hn(?“){CB(e )Z, () + Zy(dh)) (4.4.10)

By equating (4.4.5) and (4.4.10), one obtains

inA
E———f—— a.e. wrt Lebesque measure A
iA
CB(e )
o) =
n
0 a.e. wrt GV measure
Hence G, increases only on Sﬁ(: [=7,n) with R(SB) =0, If
2 k
YO(Y-k’Y—k—l"") corresponds to Hé )(K), then
o - i(n-k)_ (k)
LS AU SUPTIETRRETD B ie HB A2z (ar). (4.4.11)

Now one obtains, from (4.4.4) and (4.4.11) with the aid of the spectral

representations, that
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5 _ B.B
Yn Yn(Yn—k’Ynfk—l"") - ;Zg Cmgn—m
T i(n-kOh, ikh £ (9
= f e {e (k)}Z (ar)
i B
T wladh, dmk (9
= f RN Hy O 0))z (@) . (a.4.12)
=T
Then,
5 i R
€, (B8 = 2 e |
m=0
1 ikh (k)
= _£ e Hy ) | G, (dM)
1T ik o)
i _i |e B ) |6, (a)
1 i1 (k)
= i _i |e Hy ) | G (dA) . (4.4.13)
Hence
Hék)(h) = eik)L for A ¢ SB
By (4.4.7), (4.4.8) and (4.4.13),
55 CBe—imA
g8ay o ¥ HE“I‘{_“T for he[-m,7)-8
B e e 7 B

B

The mean square mismatch error is then obtained as:

2 ~ 2
e BlaE = BEN X g wenad |
1T iRL e
-

Then
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2 2
e Bla) <1 (B] )|

A ;2
EA
L= Kék)(K) 2 x Kék)(x) .
y =T CO Bl CO
(4.4.14)
and 9
g |€k(8!a)—ek(5[a)|
‘g = B 2
| <5l
. ’\/Tﬂ: Kék)(h) 2 x| x® oy ?
= CO -7 CO
(4.4.15)
where
Kék)(h) eikx _ Hék)(h)
0] XgSB
k-1
= { >3 ciem
ikA  m=0
e : he[-m, )-8
iA B
cB(e )
(4.4.16)
One can interpret Kék)(k) as a spectral representation of an inverse

filter for [R,MB,Y] which corresponds to the k-step prediction. We

now have- the following:
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Proposition 4.4.1: k-step predictors are mean square error mismatch-

robust under the spectral distortion measure (4.4.14). The root
mean square error mismatch-robustness holds according to the

spectral distortion measure (4.4.15).

To close this chapter, the following comments are given:
(i) For purely non-deterministic processes of either an auto-
regressive type (3.3.2) or a moving average type (4.4.2),

T

(c{g)2 = oi = exp{-;—:r? _ﬁ log f()t)dh} (4.4.17)

(ii) TFor the k-step predictor mismatch of the same purely non-
deterministic processes, dl(f,g), dnm(f,g) and ©0(a/B,B/B) can
ensure the mismatch robustness in a modified sense. That is stated in

the next corollary.

Corollary 3.1.2: For purely non-deterministic processes, k-step

predictors are mismatch robust according to

e, @ e, 6]p)?
€A = k-1 = d;,(f,8)
k o |P)°
m

m=0

and

5
|ek(oz\5)—c-:k([3|f3)\

2 A —
(C]”S) = =) = dnm(f,e:) = p/p,B/B).
ko |eL|?
m=0
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Chapter 5

SPEECH COMPRESSION

5.1 LPC CODEBOOK

This section considers a direct application of spectral distortion
measures to Linear Predictive Coding (LPC) speech compression systems.
An LPC speech system extracts three sets of parameters for each ~ 20 ms
frame of speech data: filter coefficients, a gain, and a pitch (depen-
ding on the classification of "voiced" or "unvoiced") [20]. Since the
filter coefficients, which are usually in the form of reflection coeffi-
cients, correspond to the shape of human vocal tract [36], the para-
meters seem to have considerable redundancy from a communication engin-
eering viewpoint. In other words, a small deviation of reflection
coefficients which corresponds to a little variation of the acoustic tube
area will yield barely perceptible differences of sound. This evidence
leads to the idea of making a finite codebook for LPC parameter vectors.
If a simple yet rich enough codebook can be made, the communication
system needs to use only a low data rate by specifying an index to a
"codeword" consisting of a set of filter coefficients.

An early trial in this line is found in Chaffee’s work [26].
Therein, he made an initial guess from twenty-five phonemes, and then
added a new parameter set if a given frame in a training sequence had
a minimum distortion over the codebook of dicm ~ 0.6. The toﬁal number
or the cardinality of the codebook was 256 i.e., 8 bits were needed to
specify a set of filter coefficients. Instead of this covering argument,
another way of finding a codebook exists [37], [48]. The following

discussion is based on [48] and the method uses an optimum quantization
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without a statistical model [49]. A detailed explanation of the code-
book design will be found in Buzo’s work [37].

We are given a set of vector reflection coefficients [ki]ng
where k. = (kli’kZi""’kmi)T’ and i corresponds to the frame
number. We wish to design an N-level quantizer o or a codebook ¢
with the cardinality N. The quantizer makes a partition
(P;3=0,1,...,N-1} of the m-dimentional interval (-1,1)" and the

N

collection of reproduced reflection coefficient vector (k.}, j=0,1,...,
~J

N-1. The resulting quantization is
) = k, if k. e P
Q(El) kj i I

The quantizer is designed to minimize E{d(k, ,a(k.))}, where d(*,")
is a spectral distortion measure. Since we are given only a sample
sequence {§i]?:l’ the following training procedure [49] is adopted by
assuming stationarity and ergodicity.

(1) An initial guess q(o) is made (Oth iteration).

(n)
q

t
(2) Given the quantizer of the n B iteration, define a

new partition

n+1) n
P§ = {ke (~1,1>m=d(1,s,P§ ) = d(k,Pfgn)LJ#faJ
with some tie-breaking rule.
. , 2 N- .
(3) Find the optimum output levels {§§n+1)]j_é that minimize
~A(nsl
Z d(Ei:5§n+ )) , J=0,1,...,N-1
nl=i<(n+l) L
K e P(-n+1)
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(4) Calculate the sample average distortion

(n+1)L-1

(n+1)
i=nL
If An+1_ An} = € ,. then quit, otherwise increment n and go to (2).

The LPC codebook approach provides a subjective test for spectral
distortion measures. Suppose we have several codebooks of the same

ete which are made wusing the

cardinality, GIS’ Gcm’ Glog <

corresponding distortion measures. If a specific codebook gives the best
reproduction of speech, then the corresponding distortion might be more
consistent with the human perception of speech. It is easily conceived,
however, that for the comparison of large cardinality codebooks, no
significant difference will appear because of the linear relationships

of Proposition 3.3.6.

A codebook of this type is used in the next section and Chapter 6.
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5.2 TREE CODING BY PARALLEL TREE SEARCH

5.2.1 Universal Coding and Parallel Tree Search

As was explained in Section 5.1, an LPC coding system usually makes
models and sends parameters blockwise. On the other hand, there are
other data compression systems which encode waveforms directly. Such wave-
form coding systems need a higher data rate than the LPC system, yet some

are still in the low bit rate range. The advantages of the waveform en-
coding are:
(i) the possibility of on-line usage because of direct coding on
waveforms; :

(ii) implementation complexity is usually much less than the on-line
LPC.

Anderson and Bodie [39] were the first to use a tree coding of
speech waveforms. A tree coding consists of finding the best path map if
a tree structure for an input under a given criterion. A good introduction
is given in [49}, and discussions on parallel tree coding which include the
usual tree coding as a special case will be given in this section. Since
their method [397] used a tree search directly applied to speech waveforms
yielding piecewise linear reproduced waveforms, a data rate of 2 bits/sample
was needed.

Subsequently, Wilson and Husain [407] added an LPC adaptive scheme
to tree coding and achieved 1.048 bits/sample coding of speech. In their
system, an adaptive method is employed by sending a few LPC parameters
which are estimated on-line. This scheme is a deviation from traditional
waveform encoders since the system uses a reduced on-line LPC algorithm.
By using only a portion of LPC, a good code can be obtained with nearly

the same implementation complexity. yet yielding a lower bit rate.
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Looking at speech waveforms, one easily realizes that there are
distinctive modes. For example, voiced parts are of high amplitude and
considerably regular. On the contrary, unvoiced parts are of low
level and no periodicity is observed. One then realizes that if one uses
several trees in parallel, each of which is responsible for the coding
of the specific mode, then the coding system covers the entire class of
speech within reasonable distortion. This idea was motivated by the
concept of universal coding [507] which works well for classes of
possible input processes. We design a parallel tree encoder to be
universal to input speech waveforms. A parallel tree search is possible
since the increase of the number of trees will grow the implementation
complexity only linearly.

Figure 5.2.1 explains the idea of the parallel tree search, where
a two tree case is shown. A mapping F(+) maps a binary sequence which
corresponds to the path to a reproduced waveform. A tree encoding finds
the path whose mapping gives the minimum error.

Since the number of branches blow up exponentially, all possible
paths to be chosen cannot bhe memorized. Hence a suboptimal method must
be used. Currently, the M-algorithm [427 is the simplest effective
method. The M-algorithm looks ahead up to M steps and memorizes 2M
paths. If one future branch generates the smallest error, the current
trunk corresponding to the path is chosen. The algorithm then proceeds
one step ahead. This is a kind of a sliding-block code [1] called an
incremental tree encoding. The parallel tree search is understood in the
following way. For convenience, let tree 0 correspond to unvoiced

waveform segments and the tree 1 to voiced parts (in the actual system,
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eight trees are used). In the first block of length L = 2, tree 0
gives a path map 10 and tree 1 gives a path map, say 0l1l. Let tree 0
with a codeword 100 give a smaller distortion than a codeword
011 which is generated by tree 1. Then, 100 become
the coded word, and the input waveform is regarded as unvoiced. 1In the
next block, 101 is chosen giving the decision that the second block is
voiced. At the end of each block, one bit side information is used to
specify the chosen tree. The side information bit is underscored.

We note in our application tree coding is a better choice than
trellis coding [51] since digital filters with feedback having infinite

impulse responses are used in our system.

5.2.2 Fake Process Decoder

Since we avoid using on-line LPC adaptation, a good decoder for the
tree search is needed since only a small number of trees will be allowed
in practical cases. A fake process decoder proposed by Linde and Gray [41]
ig a promising candidate. By digital simulations, this decoder with a
matched tree search encoder has been shown to outperform predictive
quantizers when the waveforms are first order AR processes. It is also
believed that the fake process approach will show good performance on
higher order AR processes.

The fake process data compresser is a combination of a shift
register, a scrambler, a non-linear mapping that performs a probability
distribution transformation, and memory devices such as AR filters. All
of these components are driven by a binary sequence obtained by the

parallel tree search. TFigure 5.2.2 shows the total system of the
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parallel tree search encoder/fake process decoder. An important
attribute is that the encoder contains a replica of the decoder. The
function of each part is explained as follows. The weighted summation

and the scrambler generate uncorrelated uniform random numbers on a fin-

3

used to shape the uniform random number to a desired distribution. The

ite subset of [0,1). The probability distribution transformer F is
transformed random numbers are input to AR filters of ladder forms to
color the pseudo-white processes. According to the parallel tree
search’s side information, the best reproduction is selected at the

switch.

5.2.3 Specifications of the System

The followings are the actual selection of the gystem specification.
(i) shift register length: k = 3.
(ii) tree search depth: M = 4.
(iii) scrambler: period 1/3 scrambler [41].
(iv) F 6 (*): Laplace distribution (double exponential density).
(v) (nu;ber of ladder forms) = (number of trees) = 8.
(vi) (order of ladder forms) = 5.
(vii) quantization of reflection coefficients: uniform, 5 bits.
The reasons for the above choices (i)-(vii) are as follows: On (i)
and (ii), we have to choose k and M as small as possible so that
k=M, since less complex implementation is desired. On the
scrambler, the 1/3 period scrambler is reported sufficient in [41] yet

it is sgimple.

On the decision of the inverse distribution, experiments on actual
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speech were performed. Tirst, the speech was parsed into segments of 8 ms.
Each chunk was then categorized into eight classes according to the inno-
vation gains and the second reflection coefficients, and the representing
ladder forms for each class were found. ZFach class of waveform segments
was then inverse-filtered and the histogram was taken to estimate the
probability density functions. An important point is that the probability
density is obtained from the output of a mismatched inverse filter. 1If
the chunk of waveform is inverse-filtered by its own exact inverse filter,
then the output must be nearly white or very periodic. This is not our

case since the filters are fixed, i.e., on-line LPC is not used. Figure

)
5.2.3 shows the probability density function obtained from '"Thieves who
rob friends deserve jail," with a male speaker. They can be well-

approximated by the Laplace distribution, i.e., the double -sided exponen-

’
tial density. Examples of other sentences are omitted since their be-
havior is similar. One reason for the Laplace density might be as
follows: 1In the speech case, pitch pulse trains with fluctuations appear
in voiced sounds. Since their amplitudes are larger than unvoiced
noisy-looking parts, the decay is slower than Gaussian densities. The
sharp spike around the origin is formed by low level unvoiced parts.

The number of ladder forms was chosen as eight because of the
limitations of PDP-11 UNIX (multi-user) system. When a four tree case
was tried, the reproduced voice was sometimes unsatisfactory. The eight
tree (or eight ladder form) system is the smallest satisfactory one that
produces a highly intelligible reproduction.

The spectral distortion measure is applied to the selection of

reference ladder filters. Using the method explained in Section 5.1,

90



$9559204d Paud] [ L4 3SASAUL UDdjewsLw 4O SaLILSuap A3L|Lgeqoad €-z°g Bl

(p)

0009 000€ 0 000€- 0009-
T 110- ] 1 T 1) o.' = L) 1
c; o. ]
(q)
008 00v 0 00— 008-

01Xg

0L

01%e

(2)

000% 000¢
(e)
DO._W-_ v T T

000¢- 000%-
T, e a° T
l
1=
D_
~
1
(o7]
. 0oL~
) =
1 &
™~
&
s o
I
o




0000¢€ 000S1L 0 000S§1L- 0000€-
T 1;’;. T T o_--c T I

000% 000¢ 0 000¢- 000%-
T Te, ¥ T -o-.j| L

0LXg

0LXg

00001
T

e

L]
-

0l

0l

92



sixteen reference ladders were chosen. It was found that there is a
class of sounds which can be reproduced in a good quality by several
subtrees. Such examples are /s/, /th/ and /shh/, etc. The reason is
that any subsystem can generate noisy sounds easily. The reference
ladders corresponding to these specific phonemes are eliminated, and
eight out of the sixteen candidates are adopted. Since there is a
report [43| that eighth order ladder filters are enough, the order was
reduced to fifth because a lower complexity than the LPC system is
desired here. The five bit quantization seems the lowest possible when

the number of filters is eight and the uniform quantization is adopted.

5.2.4 Error Criteria

Since an incremental tree search by M-algorithm is adopted, the
square error of the original and the reproduced voice is the simplest
criterion for the implementation. However, this measure is subjectively
inadequate. The square error of waveform is used merely because of the
simplicity. Wilson and Husain [40] introduced a weighted square error
criterion by realizing that low fréquency errors are not very destructive
on speech quality. The criterion is

b2 h(x - X )2
" n n
where Xn and %n are the original and the reproduction, and h(-) is

an impulse response of the high-pass filter

H(z °) = 1+ a z_l + a.z 4 (5.2.1)



In their work, a, = -0.59 and a, = -0.39 were chosen.
Other possible measures are the spectral distortions. That

experiment is under investigation.

5.2.5 A Variable-Length Coding

There are many silent parts in normal speech. Moreover, even if
we listen to continuous sounds, there are considerable durations of very
low level parts. TFor these portions, information on the waveform is
totally useless since normal listeners do not perceive it. In our
selection of the eight ladder forms, there is a ladder filter which
corresponds to this silent mode. If the tree search finds that the input
waveform corresponds to such a silent part, then the encoder omits sending
the waveform information, but sends only the side information which tells
that silence is sent. This scheme can be easily added to the original

system, reducing the data rate via simple variable-length coding.

5.2.6 Results

Experiments were performed on "The pipe began to rust while new,"
and "Add the sum to the product of these three,” of female voice as
well as "Cats and dogs each hate the other," of male voice. Both simple
square error and the frequency weighted squared error criteria worked
well yielding highly intelligible reproductions. However, the parameters
chosen in [40] yielded worse quality than the simple square error criter-
ion because low pass filtering occurs. Figure 5.2.4a is the original
speech. Figure 5.2.4b 1is the reproduction using the square error cri-

terion. There are parts corrupted by high frequency noise. This is the
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defect of that criterion. Fig. 5.2.4c is a reproduction using

the frequency weighted square error with parameters chosen in [40]. The
transient part is insufficiently reproduced. Hence, for our system,

a; = -0.59, a, = -0.39 are not good choices. By parameter adjustment
comparing the original and the reproduced spectra, a, = -0.5, a2 = -0.1
are found to be better. The final criterion was judged the best by
listening tests among the waveform error criteria. Figure 5.2.4d shows
the reproduced waveform from this criteion.

Tigure 5.2.5 shows scatter plots of distortion measures between the
original and the reproduction of "The pipe began to rust while new," of
female voice. The figures show total, normalized and gain term of dis-
tortion measures respectively. d and d2 are compared there. One

IS log

finds a couple of tendencies of these distortion measures from the figures.

The bifurcation 1s found in Fig. 5.2.5a and Fig. 5.2.5c. Since
2 2
g
2 2.2 £
dlog(df’gg) = log ;E-)
g
a
nd 9 9
fof o]
2 2 f f
dIS(Uf’Ug) — - 1 - log - j
o] o
g g
one obtains
2 2 2 2
= 1 - d .(56.2.2
dIS(Of’Ug) exp{+ dlog(df’d )} . log(af,cg) ( )
Therefore, the bifurcation appears. If dIS is gymmetrized yielding
d <h’ such a bifurcation does not appear. From Fig. 5.2.5b, it is
co
2
observed that the gain normalized dIS (which is equal to dncm) is
2
more sensitive to spectral deviations than dlog' The points of large
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deviation in Fig. 5.2.5b correspond to points of very small gain distor-
tion in Fig. 5.2.5c. This means that our speech compresser yields large
spectral distortion only when the gains are very small, i.e., mostly at
the silent parts which are not perceptible.

Finally we give comparisons between the system in [40] and ours.
Both reproduction qualities were compared using experimental tapes at
the Lake Tahoe 1978 Information Theory Workshop. Each system reproduced
highly intelligible decoded voices. A comparison table is given in

Table 5.2.1.
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TABLE 5.2.1

Comparison of Specification and Performance

Wilson & Husain

The System as of August 1978

incremental tree

hybrid of incremental tree and block structure,
fake process approach, Laplace p.d.f.

on-line identification
of LPC’s,
scale adaptation

off-line design of 8 reference ladders
(implementation complexity is less)

order of filter = 3

5, reflection coefficients are uniformly
quantized into 5 bits

8 kHz sampling rate,
8000 + 384 = 8384 bps

8 kHz sampling rate,
8000 x (1+3/128) = 8187.5 bps
(side information is half)

* ok can omit information for silence parts
(variable length coding)
8000 x (percentage) = 5500 bps
mode block length is
31 ~ 62 ms 8 ~ 24 ms

frequency-weighted
square error

frequency weighted
square error
(coefficients are
different)

spectral distortion
measures

good reproduction
gquality

good reproduction
quality

under investigation
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Chapter 6

CONCLUDING REMARKS

In this work, we have investigated the theory of process distortion
measures and their applications. Among such measures, spectral distor-
tions provided simple and direct engineering applications, especially to
speech encoding systems. Our main interest in the previous chapter was
waveform encoding using a parallel tree search encoder and fake process
decoder. Waveform error criteria were used to find the best path map of
the parallel tree. It is bhelieved that error criteria using spectal dis-
tortion measures give different path maps which possibly yield better
reproductions. Experiments based on this idea were tried. If spectral
error criteria are used blockwise without any overlap, the quality of
decoded sounds is not good because the pitches are not correctly repro-
duced. Several possibilities for the pitch reproduction have been tried.
One easy way is a sliding-blockwise summation of spectral distortions.
Preliminary experiments showed that the method is a possible candidate.

It may be useful for future studies to comment on a side-information
only reproduction. In this case, ladder filters are driven by pseudo-
white processes which are obtained by the Laplace distribution transfor-
mation of binary i.i.d. numbers. Since the cardinality of the codebook
used in the previous chapter was eight, the reproduced sound was unsatis-
factory. It is easily conceived, however, that reproduced speech will
sound like whispering voice if a codebook with much larger cardinality is
used.

A practical application of the predictor mismatch idea can be found
in the following speech compression system which avoids on-line LPC
estimation, yet achieves low data rates. The system is an inverse-filter
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matching encoder which observes the mismatch errors. From another
viewpoint, the system will be seen to use only the side information of
the parallel tree search system. Tigure 6.1.1 explains the total system,
which is essentially in the same line as Chaffee’s approach [26]. Buzo
suggests the same system [37] from an optimum LPC codebook viewpoint.

The operation principle is as follows. By virtue of (4.1.4), the

mean square mismatch error is

m
2 2
e@lm” = & T bXx |
k=0
2 T iy, 2
o 7
= g | B D] g (6.1)
2n . iA, 2
-7 |A(e )|
where
- 3 +az ™
A(z) = 1 + alz + 2,z + *
-1 -2 -m
= 6.2
B(z) = 1+ blz + bz T+ ...+ bz ( )

Let the unknown input be [Xn] with spectral density f() =

iK)IZ'

gi/'A(e A filter B(z) which minimizes

2
CE = E(BICD (6.3)

ig selected from a given codehook. Since only one sample path of {Xn}

is given, the correspondence (3.4.1) is relied on. That is,

n +N-1
- 2
£ = 6.4
Cg = 2 | 2 bkxn—kl (6.4
n=n,, le=0

is used instead of CE' If the codebook is rich enough to inverse-

filter most inputs almost optimally, then one obtains
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= c@®a? ~ e = 2 (6.5)

(C) O'f

E opt

NP ; o ,
where o corresponds to A(e” ) which minimizes the criterion LE

Note that
nO+N—l - )
4 = X 6.6
(LE)opt Z | 2 Kk n-k ( )
n=n k=0
0
By this method, we have
1 - A 1 n E(A a}z
— j’f(h)dx = — Blofs) 5
27 27 ~n 2
-7 -7t |A[
1 T
E &2 J£ £(A) dA (6.7)

Therefore, this method nearly achieves power matching. By the following,
the system can be regarded as an encoder under the Itakura-Saito distor-

tion measure d__.
= 1S

A A2~ D
Propogition 6.1: Finding the spectrum f(A) = gf/|A| which minimizes

CE with the power matching

1 % 3 *u
5 ( f(N) = o f f(A)dL
-7 -7

is equivalent to the minimization of dIS(f,g) over g.

The DI'OOf ig given in the appendix. In [37], a different proof is given.
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For pitch estimation, sharp spikes of the chosen inverse filter’s
output might be used. By picking up the spikes, an estimate of a pitch
period would be possible. If a more precise estimate of the pitch is
needed an extra specific device is attached to the system. The study in
this line has begun. We comment that the configuration of the system is
appropriate for digital filters and registers.

We have shown that process distortion measures, especially spectral
distortion measures, can be good tools for statistical signal processing

systems. We suspect that many other such applications are possible.
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Appendix A

PROOF OF PROPOSITION 6.1

m
i ~ —ikA ~
Lemma A.l: Let ﬁ(elk) = > a, e s with ag = 1 minimizes
k=0
z 2
2 |b, X |, then
k=0 k n-1
-k -k
(1,0, (1,275, = (1,1),(1,2 ), (A.1)
A A
for k=-m,-m+1,...,0,1,... m
Proof.
This is a direct result of (3.4.11) and (3.5.2). 1
Proof of Proposition 6.1:
o} g
: 2 £ f
Since dIS(f,g) = dcm(f,g) + 2 (c -1 - log S )
g g
by (3.4.2), the minimization of dIS(f,g) on {bl,bz,...,bm} is
equivalent to that of CE. When bk = 8, k=1,...,m,
2 2
a g
e 2 f 2 AL DD T
dig(£,07/[A]T) = — (1+a_ (/]A|7,1/[A] 7)) -1-1og —5
a a
2 ,,n, 2 2
d g (£,6/[A[7)/9” = 0 gives
2 2 2 ~ 2 2
o0 = og{l+d _(Q/[A|7,1/|A]7)7}

2 2 ~ 2
= 2l + jA-a)?)

2,8,2
= S2JA

2
5 1)
=% O’ ———
£ 2
2
A
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Therefore,

KB D Doiiy i
oLl = ol
2170 oA
That is,
1 T N 1 T
5 -aE T = = :]rt £(L) dh

by Lemma A.1.
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Appendix B

OUTLINE OF THE EXPERIMENTAL SYSTEM

The purpose of this appendix is to give an outline of the experi-
mental speech waveform encoder/decoder system from a software simulation
viewpoint.

(1) 1Input Speech: sampled at 8 kHz.and in 16 bit binarjs form

whose reference rames are f1.f2 ...

£6.

’
(2) Programs: all programs are written in the Language C;
(i) a main program (main.c) which contains
parallel tree searches;

(ii) Subroutines for shift registers (shreg.c),
scramblers (scrbl.c), inverse Laplace distri-
butions (tlap.c), ladder filters (slad.c),
and error criteria (wdisfn.c for waveform
errors and sdisfn.c for spectral distortion

measures) ;

(iii) a D/A driver.

Compilation and execution methods are described in the UNIX manual.
(3) Output: After the execution, a reproduced waveform is
obtained in 16 bit binary form. Higher 8 bits are D/A converted
by the AR-11 D/A. The converted analog waveform is low pass
filtered by a 12 pole Butterworth filter with fc = 3 kH=z.
After 100:1 attenuation, the waveform is input to a loud voice

speaker.

Soft copies and detailed explanations of all programs are stored in a

portable disk of Stanford ISL named /yasuo.
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