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ABRISS

Es werden stochastische Formungen der Neuronen und Neuronen-
bevdlkerungen entwickelt. Diese Arbeit hat drei Themen, und zwar
Neuronen des spontanen Typs, Neuronen des gezwungenen Typs und wechsel-
seitig hemmende Paare. Das Hauptgewicht wird ihren stochastischen
Eigenschaften beigelegt.

Kapitel eins dient zur Verdeutlichung der Stellung dieser Arbeit.
Bio-Systeme besitzen viele bemerkenswerte Funktionen. Wenn sie vom
technologischen Standpunkt aus erdrtert werden, bedient man sich der auf der
Kybernetik fuBenden Methodik. Diese besagt, daf Bio-Systeme und
Maschinensysteme sowie kombinierte Systeme aus beiden zusammen behandelt
werden kdnnen, so lang Energie und Information im Mittelpunkt stehen.
Daher ist die Untersuchung des Informationsflusses von wesentlicher
Bedeutung, um lebende Kdrper als Systeme zu verstehen. Das Nervensystem
ist eines der hervorstechendsten informationsverarbeitenden Systeme in
den Bio-Systemen. Der erste Schritt zu einer mathematischen Diskussion
der Nervenaktivitdt wurde von W. S. McCulloch und W. H. Pitts unter
verwendung des logischen Kalklils unternommen. Seit ihrer Pionierarbeit
nahmen die meisten Forscher auf diesem Gebiet unwillkiirlich die Meinung

an, dap die Informations verarbeitung im Nervensystem mittels determinis-

tischer Methoden voll verstanden werden kann. Dagegen zeigen neuere
Versuchsarbeiten eine Vielzahl von Gegenbeispielen. Es gibt Neuronen,
die sich spontan ohne Regelmifigkeit erregen. Und es wird auch vom



Auftreten eines nichtidentischen Feuerschemas bei identischem Reiz
berichtet. Es ist nicht unmoglich zu der Auffassung zu kommen,

daf diese Regellosigkeit die oberflidchliche Erscheinungsform einer
auBerst komplexen Verschlusselung ist, wenngleich es nur sparliches
Beweismaterial fur diese Idee gibt. Diese Tatsachen dienen als beste
Beispiele, um die Notwendigkeit von Methoden der Wahrscheinlichkeits-
rechnung zu belegen.

In Kapitel zwei ein kleiner Betrag mathematischer Einleitung
gegeben, und das Neuron des spontanen Typs behandelt. Zwel grundlegende
Veranderliche in der Neuronendynamik sind das Neuronenpotential und
die Schwelle, In dem Augenblick, wenn das Neuronenpotential die Schwelle
erreicht, feuert das Neuron. Da das Neuronenpotential als eine
Zufallsveranderliche behandelt wird, wird die obige Eigenschaft in
das Problem der Kurveniberschneidung oder das Problem der Erstdurchgangs-
zeit ubersetzt. Dieses Problem wird zur Erorterung der Neuronen des
spontanen Typs angewandt. Hierbei liegt das Ziel darin, die Dichte
der Ubergangswahrscheinlichkeit des Neuronenpotentials und die Dichte
der Wahrscheinlichkeit der Erstdurchgangszeit zu erhalten. Diese
erfullen die Kolmogorov'schen Gleichungen und die Erhaltung der Wahr-
scheinlichkeit, die in der Einleitung oben genannt ist. Und die
Veranderung der Schwelle wird auf das Problem der beweglichen Grenze
zuruckgefuhrt. Die numerische Losung wird versucht wie auch die analytische,
und die erhaltenen Losungen erklaren die spontanen Aktivitdten der

Neuronen recht gut.



Kapitel drei behandelt Neuronen mit stochastischen Eingangsimpuls-
reihen. Poisson-Impulsreihen werden als Eingange angenommen.
Die Angemessenheit dieser Annahme wird durch die Begrenzungssétze beil
Uberlagerung der Impulsreihen untermauert. In der Folge werden die
mathematischen Modelle der Neuronen des erzwungenen Typs mit erregenden
und hemmenden Eingangsimpulsreihen, die auf den Poisson-Verfahren
beruhen, betrachtet. Es gibt zwei Arten von Hemmungen. Die eine
ist die subtraktive Hemmung, die das Neuronenpotential um einen gewissen
Betrag verringert, wihrend die zweite es teilt order verzweigt. Beide
Fille werden betrachtet und analysiert unter Verwendung der Dichte
der ﬁbergangswahrscheinlichkeit des Neuronenpotentials und der Dichte
der Wahrscheinlichkeit der Erstdurchgangszeit, die die Kolmogorov'schen
Gleichungen und das Gesetz der Erhaltung der Wahrscheinlichkeit erfiillen.
Bei dem Problem der Neuronen der gezwungenen Typs unterscheiden sich
folgende Punkte von den Neuronen des spontanen Typs : die Notwendigkeit
der Diffusionsniherung des Differentialgebers flir die Sachgem&@Bheit
des Problems der Erstdurchgangszeit ; das Problem des Vergleichs der
beiden Typen von Hemmung ; die Probleme der zeitweisen Uneinheitlichkeit
infolge der Impulstempomodulation. Bei der Diffusionsndherung wird
die L&sung mit der Digitalsimulation verglichen und eine gute Uberein-
stimmung erreicht. Beim Vergleich der beiden Typen von Hemmung ist
der Unterschied zwischen ihnen abhidngig vom Riickstellwert des Neuronen-
potentials. Und bei Anwendung der Impulstempomodulation lagt sich

berichten, daf die Dichte der Wahrscheinlichkeit der Erstdurchgangszeit



je nach Modulation eine multimodale Verteilung zeigt. Wenn die modulation
periodisch ist, wird das Problem der Intervalldichte der Ausgangsimpuls-
spitzen aufgezeigt. Solch eine Situation wird herbeigefiihrt, um die
Informationsprozesse beil Neuronen zu erforschen, unter Verwendung eines
periodischen Reizes. Die Relevanz der Intervalldichte der Ausgangs-
impulsspitzen zur Dichte der Erstdurchgangszeit wird betrachtet und

die Ndherungsgleichung dafiir gegeben.

Kapitel vier behandelt zwei Arten von wechselseitig hemmenden
Paaren. Einmal das System, daB jedes Neuron eine unabhingige Poisson-
Eingangsimpulsreihe besitzt, zum anderen das System, daB jedes Neuron
eine gemeinsame Poisson-Eingangsimpulsreihe hat, die mit einer Verspdtung
an ein Neuron des Paares angebracht wird. Diese beiden Systeme zeigen
multimodale Intervalldichten der Ausgangsimpulsspitzen trotz zeitweise
einheitlicher Poisson-Eingangsimpulsreihen. Diese Tatsache bedeutet,
daf die stochastischen Rhythmen von solchen Systemen erzeugt werden.
Diese beiden Systeme unterscheiden sich nicht, so lang sie lber die
Mittelwerte der Ausgangsh@ufigkeiten verglichen werden, wirend die
Querbeziehungen sehr unterschiedlich sind, was die Interferenz der
Impulsreihen wiederspiegelt. Weiterhin werden zeitweise uneinheitliche
Eingdnge behandelt. In diesem Fall, kénnen Eingangsimpulsreihen mit
unterschiedlicher Impulstempomodulation flir jedes Neuron angewendet
werden. Es wird dargelegt, daf der untere Bereich der Impulstempo-
modulation die Hauptrolle spielt.

In Kapitel funf werden Zusammenfassung und SchluB gegeben.



Die wesentlichen Ergebnisse sind die Systematisierung der stochastischen
Modellformung und Methode flir Neuronen und Neuronbevdlkerung, und die
sinnvolle Interpretation der neuralen Verhaltensweisen, die eine

Erkldrung nach der deterministischen Methode abweisen.



CHAPTER  ONE

INTRODUCTION

1.1 Prologue

Biological systems have many remarkable functions in comparison with

artificial tools or machines. And until now, most of them have not
been realized artificially. Even if some of them are made, they are
not so compact or reliable. However, when they are discussed from
the engineering side, the same methodology is adopted. Its main idea

is nicely stated in the Cybernetics advocated by N. Wiener in 1947,

which tells that machines and animals as well as their combined systems
can be discussed unitedly as long as they are considered centering around
energy and information. Therefore, it is essential to study aspects

of information in order to discuss a living body from a viewpoint of

a system.

Nervous system is one of the most skilful systems to treat with
information in a living body. It is made up of neurons and the information
in it is delivered and received by electrical pulses. In 1943, W. S.
McCulloch and W. H. Pitts made a threshold logic model which explains
the basic functions of neurons and the logic of a digital computer.

Since the McCulloch-Pitts model was presented, an idea that the

information processing in nervous systems can be understood at length



by means of deterministic methods had become prevalent among researchers.
But the experimental results revealed noisy properties of neurons.

For example, random spontaneous activities of neurons or non-identical

responses under an identical stimulus were informed recently. These

are good instances that it is not sufficient to consider only deterministic

information processing in nervous systems. It is important to make

clear the essential point which is brought by the probabilistic nature

of nervous systems. Therefore, probabilistic method naturally arises

besides deterministic method.

This dissertation tries to discuss stochastic properties of neurons

with the aid of probabilistic models.



1.2 Historical Background

In this section, a brief historical review on the studies related
to the information processing of nervous systems is presented.

From the viewpoint of Cybernetics, it is possible to look back
until R. Decartes. In 17th century, he compared a living body with a
machine of clockwork. It is said that the nervous system in his image
was made up of pipes of the organ.

It has been known that activities of nervous systems are accomplished

by certain electrical potentials. L. Galvani was the first person
who found that by observing the activity of the detached leg of the
frog (1768). This was the birth of the science of neurophysiology.
In 1848, E. H. du Bois-Reimond tried further study and certified the
relation between the galvanism and the nervous conduction. In 1850,
H. von Helmholtz obtained the velocity of nervous signal by measuring
the contraction of muscles.

In 1922, H. S. Gasser and J. Erlanger studied the action currents
of the nerve with a cathode ray oscillograph. That was an epoch-making
event. This descent leaded to A. L. Hodgkin and A. F. Huxley's studies
(1939 and 1952). They measured the pulse transmission along the
giant fiber of Loligo and made mathematical models on the membrane
activities and the excitation of an axon. The models are called
H-H models which explain the generation of a pulse and the wave shaping
action.

It was at the end of 19th century that Ramdn y Cajal considered



on multiple neuron system. He presented an idea that a brain is
made up of many independent neurons. After that, his idea was proved
with the aid of the electronic microscope. In 1897, C. S. Sherrington
discussed the mammalian spinal cord as an organ of reflex action.
R. Lorente de N6 analysed the activity of the chains of internuncial
neurons in 1938,

Such steady pile leaded to the next great development, In 1943,
W. S. McCulloch and W. H. Pitts made a threshold logic model of neurons.
It has both excitatory and inhibitory inputs as well as the threshold,

and is described as

xi(t+T) = 1] § aijxj(t) - Bi ] (1.1)
where X5 takes 0 or 1, aij means the synapse weight coefficient and
ei is the threshold. By this model, it is possible to make the basic
logic of the digital computer.
Several years later, they joined the Wiener's group of Cybernetics.
N. Wiener also considered similarity and difference between computing
machines and the nervous system in his monograph " Cybernetics " (1948).
Thereafter, many studies were presented under the influence of
Cybernetics. In 1856, S. C. Kleene considered events in nerve nets
by the usage of the finite automata theory. In 1958, F. Rosenblatt
presented the perceptron and explained some aspects of learning processes.

In 1961, the M-P model was extended by E. R. Caianiello. The model

includes the characteristics of past records, the refractory period



and the variation of the coefficients.

x, (t+1) = 1[ J] aij(erj (t-r7) - 9, ] (1.2)
ir

-L 0 <r <R
(r)

i u
11

-f(r) R,£Tr <R, +R (1.3)

a1 - 1 umxj(t_rr)xi(t) - A aij(r) ©) - a;; P @ay Py

1 Ai_(r) (r)(t)]
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J 1]
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" A (r) > (r)

. ag; 0 20 (1.4)

This model shows the reverberation activity and both memorization and
oblion. The reverberation was nicely simulated by B. C. Farley and

W. A. Clark with the aid of the computer in 1961. And R. F. Reiss made
a similar model, however, his model includes the function of the fatigue
(1962) .

Electronic models also prevailed after the First Symposium on
Bionics in 1960 ( " Bionics " was named by J. S. Steele in 1958. ).

L. D. Harmon's neuromime (1961) and H. D. Crane's neurister (1962)
are worth noting.

Mutual concessions between physiology and technology is represented
by J. Y. Lettvin et. al.'s study on frog's eye. They analysed what the
frog's eye tells the frog's brain (1959). The data were used to make an
electronic model by H. von Foester (1962). Another example is T. B. Martin

and S. S. Talavage's application of the neural logic to the speech analysis

10



and recognition (1963). Although the disposition is a little different,
P. R. Westlake's uiscussion on the possibility of neural holographic
processes (1968) is also worthy to note.

Since McCulloch-Pitts' pioneering work, most researchers have
believed involuntarily that the information processing in the nervous
system can be fully understood by means of deterministic methods.

But C. Pecher had already reported fluctuations in excitability of
neurons (1939). In 1952, a more detailed work was presented by P. Fatt
and B. Katz. They studied spontaneous subthreshold activities at

motor nerve endings, which leaded them to find that the discharge of
synaptic vesicles has essential random properties and nerve inpulse

has an effect to increase the probability of the discharge temporally.

These facts are early steps which suggest the importance of probabilistic
nature of the nervous system. And from the engineering side, J. von
Neuman pointed out that the nervous system is rather probabilistic
in his posthumous manuscript (1958).

G. L. Gerstein and N. Y.-S. Kiang et al.'s works in early sixties
made a significant step. Kiang studied the spontaneous firing and
the non-identical firing despite an identical stimulus in the cochlea
nucleus of cats (published in 1965). In 1964, G. L. Gerstein and
B. Mandelbrot made a random walk model for the spike activity of single
neurons assuming that the neuron potential is a Wiener process with a
positive drift. This was the first trial to use stochastic processes

in order to discuss probabilistic activities of neurons.

11



In 1965, W. M. Siebert considered the stochastic behavior of primary
auditory neurons. And T. F. Weiss made a model of the peripheral
auditory system by introducing the low pass filtered Gaussian noise
to the neuron potential (1966).

A little later, Grestein's model was improved to explain input-
output relation by M. Ten Hoopen (1966), B. Gluss (1967), P. I. M.
Johannesma (1968) and R. M. Capocelli and L. M. Licciardi (1971).

Another trial is D. H. Perkel et. al.'s study on neural spike trains
(1967), and J. P. Segundo et. al.'s study on the effect of multi-input
channels (1968). They are related to the coding and information processing
in the nervous systems.

Although probabilistic methods have been paid attention, they
are not in a satisfactory status. It is necessary to develop the
probabilistic method as well as the deterministic one.

In this dissertation, some theoretical considerations are presented
for the probabilistic behavior of neurons and several new results are

obtained.
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1.3 Structure and Activity of Neuron

Neurons are cells usually not more than 0.1 mm in diameter, which
have become specially adapted to processing and transmitting electrical
signals within the nervous system. Each neuron comprises a soma,
together with dendrites, and a single axon. The dendritic complex
functions as an antenna, collecting incoming signal and conveying them to
the soma, while the axon functions as a tramsmitter, conveying outgoing
signals to other neurons and to muscles. Such signals generally
have to cross separating gaps between neurons, called synaptic clefts.
This is done by the discharge of synaptic vesicles involving chemical
transmitter substances. Then the post synaptic potential occurs with
a little time delay. Therefore the signal transmission is one-way.

There are two kinds of post synaptic potentials : the exc&tatory
post synaptic potential (EPSP) and the inhibitory post synaptic potential
(IPSP).

As neural connections, three kinds of ones are known. They
are the excitatory connection, inhibitory connection and the pre-synaptic
inhibitory connection. A neuron is connected with many synapses of other
neurons (multi-input), however, it generates one output signal.

The output signal generation mechanism is as follows. EPSP's
and IPSP's are summed up in a cell body (spatial summation). Meanwhile,
there is the temporal summation in a single synapse when input signals

are applied one after another. Then, the total neuron potential increases

13



in spite of its tendency of approach to the rest value. And at last,
it reaches the threshold. Then the neuron produces a sharp pulse
(spike) and it is transmitted to other neurons along the axon with
the wave shaping.

After -a firing, there is an absolute refractory period in which

the neuron can not fire again. Then the threshold decays to the
normal value. This period is called an relative refractory period.
Other properties are the adaptation and the accomodation. When a

neuron is applied a stimulus continuously, its output pulse frequency
drops gradually (adaptation). And if an input stimulus is increased
by degrees, the output does not follow the input increase but is fixed
(accommodation).

In addition to above properties, the stochastic nature is reported,
especially on noise of the neuron potential. One reason for the

existence of noise is due to a thermal environment.
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1.4 Significance of Pulse Distribution

Signals which carry information from outside are converted by
receptors into the form which is acceptable in nervous systems. It
is necessary to investigate in what form the information exists in the
nervous system in order to understand the information processing of
the system. In other words, it is to study what code is used by the
nervous system for its internal transmission.
The internal signals are neural pulses, or spikes. They are essentially

the same height so that the information transmitted by the neuron

must be coded in the pattern of the pulse series. And wide varieties
of patterns are found. In neurons which control the strech of muscles,
pulse trains are comparatively regular. On the contrary, they are

quite random in others, e. g. auditory neurons.

Most of pulse trains have fluctuations in their pulse interval.
And it is not impossible to consider that this randomness is the superficial
appearance of very complex coding. However, there are rare reasons
to support the idea. Counterwise, the essential randomness of the
discharge of information transmission substances is reported and it
is considered that a neural pulse increases the probability of the release
of synaptic vesicles temporally. Therefore, the randomness in pulse
distribution owing to the noisy character of the neuron needs to be
considered when the neural coding is discussed.

One candidate for the neural code is the frequency of pulse trains.

15



In other words, pulse frequency modulation is a plausible one. Examples
can be seen in motor nerve pulse trains which control muscles and

the typical one is reported by G. D. Bittner. lle presented the fact
that the contraction of muscles due to sparse pulse trains becomes

much stronger when dense pulse trains are applied suddenly.

Another candidate is the pulse pattern. D. H. Perkel et. al.
measured the output pulse frequencies when a Poisson pulse train or
a regular one with the same mean frequency is applied, and recognized
that they are very different. C. A. G. Wiersma and R. T. Adams studied
the influence of nerve impulse sequence on the contractions of different
crustacean muscles. By their report, the contraction is far stronger
when the input pulse train has a combination of successive long and short
intervals rather than that in the case of uniform intervals.

A special example is reported by D. M. Wilson and R. J. Wyman.
According to their report, the motor output pattern of locusts is not
affected by that of input pulses but it is regular.

There are many varieties in neural codings. And among them,
the frequency code is the one which is widely seen and most general.

And this coding is considered after.

16



1.5 Description of Problems

After due consideration on the preceeding sections, the description
of problems in this work is presented here.

The signal unit of nervous system is each pulse, which has almost
the same shape. Therefore the information transmission in nervous
systems does not take the form of waves or other shapes but pulse trains.
And this pulse trains can be regarded as stochastic ones in many cases.
For example, some neurons fire spontaneously with fluctuations or non-
identically despite an identical stimulus. It may be considered that
such stochastic nature is the superficial appearence of very complex
information code, however, the evidences to support such an idea are
rare. On the contrary, the essential randomness of the discharge of
information transmission substances is reported.

Therefore neuron modeling to study stochastic behaviors is of
real necessity. For all that, the cultivation is not in a satisfactory
status. This work is devoted to improve this situation, and discusses
following problems.

The first one is the spontaneous type neuron which produces spikes
according to its.own fluctuation. The mathematical model has following
assumptions. The neuron potential has a fluctuation and obeys the
Ornstein-Uhlenbeck process, because the neuron potential is not so
perfectly random as that of the Wiener process but has an attraction

to the rest value. The threshold varies exponentially and the neuron

17



potential has a constant lower limit. When the neuron potential
reaches the threshold, the neuron fires and the neuron potential is
reset to a certain position. After a firing, an absolute refractory
period exists. In discussing stochastic properties of neurons, the
transition probability density function and the first passage time
probability density function are the important quantities, which are
governed by the Kolmogorov's equations and the law of the probability
conservation. Although they can be set up easily, the analytical
solutions in time domain are rarely obtainable in general. Hence, the
numerical analysis is performed as well as analytical method, and a
good deal of fair results are obtained and discussed.

The second one is the forced type neuron which has input pulse trains
based on the Poisson processes. This is certified by theorems on
the superposition of pulses. Other assumptions and methods are almost
the same as above except the diffusion approximation of the stochastic
processes. In this case, the temporally inhomogeneous processes due
to the pulse frequency modulation arise, whose first passage time density
reveals the multimodal distribution. And the comparison of the two
kinds of inhibitions, i. e. the subtractive inhibition and the shunting
inhibition, is also made. Furthermore, the output spike interval density
is discussed in the case of the periodic modulation.

The third discussion is made on two types of reciprocal inhibitory
pairs as the problems on neuron populations. The first type has

two excitatory driving inputs which are mutually independent. The second

18



type has one common excitatory input but it advances in two ways, one
of which has a time lag. The neuron dynamics is the same as that of
the forced type with subtractive inhibition and each neuron has an
identical structure. The inputs are assumed to be based on the Poisson
processes and the inhibition occurs when the companion neuron fires.
In this case, the digital simulation is mainly relied upon. Both
temporally homogeneous case and inhomogeneous case are considered.

The discussions on the adaptation and the accommodation are left

as further attempts.
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CHAPTER TWO

SPONTANEOUS TYPE NEURON

2.1 First Passage Time Problem of Neuron Potential

In chapter one, the necessity to consider stochastic properties

of neurons was explained. And in the section 1.3, many properties
of the neural activity were pointed out. Among them, the threshold
property is the most essential one. In this section, it is seen that

the threshold property is related to the first passage time problem
of stochastic processes.

A sample path of the neuron potential is denoted by Y(t,w) where
t means time and w 1s a sample point of the sample space § .
Then the pulse generating mechanism is interpreted as follows. Y(t,w)
varies by some reasons as time passes, and at last it reaches the threshold.
The output pulse is spiked at that moment. That is to say, the curve
crossing problem is presented. And the curve crossing time is no
other than the first passage time.

When the threshold is denoted by d(t) , the first passage time

is defined by

z%(uﬂ =inf { u : Y(u,w) > d(u) | Y(s,w) < d(s)} (2.1)

U;S

Afterwards, the transition probability density and the first passage
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time probability density are used frequently. The transition probability
density of the ne' ron potential Y(t,w) is denoted by f(y,tfx,s)

It means that the probability that the neuron potential Y(t,w) takes

a value in dy-neighborhood of y is f(y,tlx,s)dy when Y(s,w) is

equal to x . Therefore, by using the probability distribution function,

dPr{ Y(t,w) <y | Y(s,w) = x }
dy

fly,t|x,s) = (2.2)

holds.

The first passage time probability density is denoted by g(d,t\x,s).
It means that the probability that the neuron potential reaches the
threshold d at the time in dt-neighborhood of t is given as g(d,t|x,s)
when Y(s,w) 1is equal to x . Therefore, by using the probability
distribution function,

dPr{&q(w) <t | Y(s,w) = x }
dt

g(d,t]x,s) = (2.3)

holds.

The relations between these probability density functions and
the first passage time problem are as follows. On the transition
probability density of the neuron potential, f(d,t}x,s) becomes zero,
because the neuron potential never takes a value larger than the threshold.
And on the first passage time probability density, g[d,slx,sj is
equal to zero if x 1is unequal to d . On the contrary, g(d,t]d,S)
is equal to &(t-s), where &(+) 1is the Dirac's delta function.

This is because only the state which lay on the threshold originally
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lies on it unless time does not pass.
These conditions on both probability density functions mean that
the curve crossing problem is reduced to the absorbing barrier problem.

Another important relation immanent to the first passage time

problem is the law of the probability conservation. That is to say,
d(t) t
J E(y,t|x,s)dy + J g(d(u),ulx,s)du = 1 (2.4)
r s

holds. The first term is the probability that the neuron potential
is subthreshold, and the second one is the probability that the neuron
potential has already reached the threshold and the neuron has already
fired. Here, r 1is the lower limit of the neuron potential.

By differentiating with respect to t ,

. )
J f[y,t|x,5)dy (2:5)

gld(t),t|x,s) = — 3¢
T

is obtained.
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2.2 Discussion of Spontaneous Type Neuron

The spontaneous type activity of a neuron is discussed in this
section using results in the preliminary section 2.1 . To make a
model of this type of a neuron, the Wiener integral is introduced to
express the fluctuation of the neuron potential. Of course various
models of stochastic processes can be made on the fluctuation, but
the Ornstein-Uhlenbeck process is adopted because the neuron potential
is not so perfectly random as the Wiener process but has an attraction
to the rest value. T. F. Welss treated similar model in discussing
the peripheral auditory system, however, he used only the digital simulation

and did not make an exact formulation.
2.2.1 Assumptions on the Spontaneous Type Neuron

The assumptions on the model are as follows.
a. The neuron potential has a fluctuation which obeys the Ornstein-
Uhlenbeck process.
b. The threshold value is time varying function that
TS
d(t) = d.exp( - —) (2.6)
0 T
d
where s 1s the time when the previous spike was generated.
c¢. The neuron potential has the lower limit 1T . If the neuron potential
reaches d(t) , the neuron fires and the neuron potential is reset

to x . The threshold is also reset to dO
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d. s £t <s + 8 1is the absolute refractory period and in this period

the neuron potential decays deterministically with a time constant 1 .

Therefore, a sample path of the neuron potential is expressed as

follows by using the Wiener integral.

t-s
Y(t,w) = (x-n)e T +n (s <t < 5+8) (2.7)
fiti
t R
Y(t,w) = J £ dW(u,w)
s+6
t-(s+8)
-
+ {Y(s+8,w)- nle +n  (t > s+6) (2.8

. 2 ; :
where W(t,w) is (0,07 )-Wiener process, n 1is the rest value of the
neuron potential and T 1is the time constant of the neuron potential

As Y(s+é,w) and n are deterministic quantities, & and n

may be eliminated by the transformations s+8 > s , Y-n > Y . Then
. bu . E-s
t T T
Y(t,w) = J £ dW(u,w) + xe (t =.8) (2.9
s
is obtained. Hereafter, this case will be treated. The statistical

quantities about the activities of neurons would be deduced more conver i

through the Kolmogorov's equations governing the transition probabilit)

density functions. For a preparation, the equation (2.9) is tramsformed

into the equation (2.10).

t t
Y(u,w) du + J dW (u, w) (t 2 s) (Z.1)
s s

Y(t,w) = x %J
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2.2.2 Discussion of the Spontaneous Type Neuron using the

Kolmogorov's Equation

In this part, the Kolmogorov's equation which governs the neural

activity .is obtained. From the equation (2.10),

1im E%—Ei AY | Y(t,w) =y}

At—>+0
1 t+At
= lim ZE—Ei - %ﬂt + J dW(u,w) + o(At)}
At>+0 5
= . L
= 5 (2.11)
and
lin gz & @0? | Y(t,w =y } = o (2.12)
At>+0
holds. & denotes the expectation operator. Then, the following
Kolmogorov's (forward) equation is obtained.
SELy,€lx,8] _ B i
Y,t|x,s) _ ___X.f(y,t|x,5) + = —= 0 f(y,t]x,s) (2.13)
at y T 2 ay2

In this case, the terms higher than the second order are zero because
of the nature of the diffusion process. But in the chapter three,
this property could be assumed under some conditions because the sample
path of the forced type neuron is continuous only in probability.

The initial condition (IC) and the boundary conditions (BC's) are

as follows.

IC fy,s|x,s) = 8(y-x) (2.14)
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BC f(d(t),t]x,s) =0 (2.15)

2 ~
BC [ %.f(y,t|x’5) g 2 gELXLEliLil ] =0 (2.16)

2 oy y=T

The equation (2.14) means that the original state of the neuron potential
is x . And the equation (2.15) means that d(t) 1is the threshold.

The equation (2.16) is set because the probability flow equals zero at y=r
which is the lower limit of the neuron potential.

The first passage time probability density satisfies

g(d(t),t]x,s) = - == f(y,t|x,s)dy (2.17)

5 (At
ot

as was obtained in the section 2.1
This problem is equivalent to the following because only the difference

in the potential between the threshold and the state, Z(t,w) , has an

effect on the first passage time. Z(t,w) satisfies
_ t-5
1 (* td
Z(t,w) = x - ;—J Z(u,w)du + do( 1 - ¢ )
s
T
+ J dW(u,w) (t >s) (2.18)
s
Hence,
4 _ t-s
of(z,t|x,8) _ 2 (E._ —a e Td )f(z,t\x,s}
at 9z T
d
2
¢ 22 oPres t]%, 5 (2.19)
2 2
3z
It £z lns) = 8len) (2.20)
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BC f(do,t\x,s) =0 (2.21)

t-s
5 Gg - i
BC K A ¥E-E )f(z,t|x,s)
2
g” 9f(z,t|x,s) B
v 5 . ] =0 (2.22)
z=r*(t)
are obtained. Here,
_ t-s
r*(t) =t +dy(1-c¢ Wy . (2.23)
And
0 dD
g(do,tlx,sj X8 f(z,t]|x,s)dz (2.24)
r*(t)
holds.
In the simple case that Ty o f(y,t|x,s) can be redescribed
by f(y,t,x), and g(d,t]x,s) by g(d,t,x) . Then, the Kolmogorov's

backward equation which is adjoint to the forward equation is available

to discuss the first passage time problem. The equation is
2 gl
E(y,t,x) _ _ x 3f(y,t,x) | 0% 37 (y,t,%) i 55
ot B - 0x 2 2 ’
ax
In this case the equation (2.17) is redescribed by
d dO
gldy,t,x) = - EE-JT fly,t,x)dy . (2.26)
From the equations (2.25) and (2.26),
2
ag(dD:t:X) - X ag(do,t,){) & O—_da g(do,t,){) (2 27)
ot R - 0X 2 2 )
ox
is obtained. The above equation is conditioned by
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¥E g(dy,0,x) = 0 x = dp) (2.28)

BC g(do,t,do) = §(t) (2.29)
BC [elet) Ly (2.30)
X=1

The expectation of the first passage time is defined by

M(x) = &E{ﬁfdo(m) } = J tg(do,t,x)dt . (2.31)
0
Then,
2 .2
o~ d"M(x) x dM(x) _
2 2 T v dx = -1 (2.32)
dx
BC M(do) =0 (2.33)
dM (x) _
BC [—?Er—-]xzr =0 (2.34)
are obtained. And the solution is given as
g, X
vmt [C0 o?T X r
M(X) = T JX € '[ erf(a-?,?—) - eI"F(m) }dx v (2.35)

The equation (2.27) is only a special case of (2.17), however,
its analytical solution in time domain cannot be obtained. Hence,

the numerical analysis must be tried.

Remark
If 17 == and r = - «» furthermore, the analytical solution is given as
.3 >
gldy tyx) = S ¢ Zepnp - (‘102;)‘) } (2.36)
V2T O 20t

But this case is rather oversimplifying as a problem of a neuron.
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2.2,3 Numerical Analysis and Results

The technique of the numerical analysis is the finite difference
method. Both implicit and explicit methods are available. But, on
the equation (2.27), a ilttle consideration is necessary because it has
the singularity that the Dirac's delta function is put on the cross
point of the IC and the BC, and the implicit method never converges.
Therefore only the explicit one is applicable. Now, the several results
by means of the numerical analysis are shown.

Fig. 2.1.a shows the solution of the equation (2.13). The state
starts from 6 mv and it diffuses, The threshold varies as time
proceeds, which is observed from the movement of the absorbing barrier.
The probability that the neuron potential is subthreshold tends to
zero as t goes to the infinity and its negative rate of change at
every moment is just the first passage time probability density.

Fig. 2.1.b is the solution of the equation (2.19) which has the positive
drift toward the threshold. Fig. 2.1.c is the first passage time
probability density obtained from the equations (2.13) and (2.17).

Dots are values from the digital simulation using 5,000 sample paths
which satisfy the equation (2.10). Fig. 2.1.a and Fig. 2.1.b are
related to the section of x=6 mv in Fig. 2.1.c because the x-axis

means the original state.

35



36

Transition probability

Fig. 2.1.a

density of the neuron potential



Teriusiod uoanau ay3l

PUB PTOUSSIU] 9l U8IMI3(Q

souaI93yTIp TeT3Uazod Byl jo
A3tsuep A3171QeqOoId UOTIJITSUBIL q:1°z ‘814

57



A3TSusp
A3171qeqoad swry aFessed 3saty 2°1°7z "814

syibd 9|dwes 000G WOl viep -

_

|

38



2.3 Concluding Remarks

The equation (2.27) was not treated, because a similar equation
will be discussed afterwards for the forced type neuron.

The initial value of the neuron potential was chosen fixed, but
if the probability density function of the initial state, p(x), is

given, the first passage time probability density is expressed by

d
g*(d(t),tix,s) = J Og(d{t],t[x,s)p[x)dx . (2.37)
T

Results obtained in this chapter are the transition probability
density of the neuron potential and the first passage time probability
density in the case of the spontaneous type neuron. At present, it
is difficult to measure the former with high accuracy in vivo. But
the latter can be obtained by measuring output pulse intervals.
Experimental results are obtained by N. Y.-S. Kiang et. al. , and the
obtained first passage time probability density shows an agreeable
tendency with them. The model presented here is eligible to be that
of the spontaneous type neuron.

When the lower limit r takes the value of the negative infinity,
the boundary condition corresponding to that is the natural boundary

placed at the negative infinity.

39



REFERENCES

(1) Blake, I. F. and W. C. Lindsey : Level-Crossing Problems for Random
Processes. IEEE Trans. on Inform. Theory IT-19, 3, 295 (1973).

(2) Darling, D. A. and A. J. F. Siegert : A First Passage Problem for

a Continuous Markov Process. Ann. Math. Statistics 24, 624 (1954).

(3) Feller, W. : The Parabolic Differential Equations and the Associated
Semi-groups of Transformation. Ann. Math. 55, 468 (1952).

(4) Gerstein, G. L. and B. Mandelbrot : Random Walk Model for the Spike
Activity of Single Neurons. Biophys. J. 4, 41 (1964).

(5) Griffith, J. S. : Mathematical Neurobiology. Academic Press,

London (1971).

(6) Ito, K. and H. P. McKean Jr. : Diffusion Processes and Their Sample
Paths. Springer, Berlin (1965).

(7) Kiang, N. Y.-S., T. Watanabe, E. C. Thomas and L. F. Clark

Discharge Patterns of Single Fibers in the Cat's Auditory Nerve. M. I. T.
Press, Cambridge, Mass. (1965).

(8) Matsuyama, Y., K. Shirai and K. Akizuki : On Stochastic Dymamics

of a Neuron and a Kind of Neuron Group. in A. S. Iberall and A. C.
Guyton Eds., Regulation and Control in Physiological Systems. Instrument
Society of America, Pittsburgh (1973).

(9) Matsuyama, Y., K. Shirai and K. Akizuki : On Some Properties of
Stochastic Information Processes in Neurons and Neuron Populations.

Kybernetik 11, in press (1974).

40



(10) Siegert, A. J. F. :0n the First Passage Time Probability Problem.

Physical Rev. 81, 4, 617 (1951).

(11) Verveen A. A. and H. E. Derksen : Fluctuation Phenomena in Nerve
Mambrane. Proc. IEEE 56, 6, 906 (1968).
(12) Weiss, T. F. : A Model of the Peripheral Auditory System.

Kybernetik 3, Heft 4, 153 (1966).

(13) Wong, E. : Stochastic Processes in Information and Dynamical

Systems. McGraw-Hill, New York (1971).

41



CHAPTER THREE

FORCED TYPE NEURON

3.1 Superposition of Stochastic Point Processes

In this chapter, forced type neurons with excitatory and inhibitory
input pulses which are based on Poisson processes are discussed.

The reason why Poisson inputs are adopted is related to the superposition
of stochastic point processes. There are many input channels ( synaptic
knobs of other neurons ) in one neuromn. As stated in the section 1.3,
the effect of input pulse trains through them 'is added ( spatial summation ),
therefore, input pulse trains can be regarded as one pooled process ( D. R.
Cox and W. L. Smith, 1953 and 1954 ; B. Grigelionis, 1963 ). . On such

problems, following theorems are important.

Theorem 3.1

Let the events on any sources occur at exactly regular intervals

so that the sequence Si is | Gi 4 ZSi , -] , where Bi is the
period of i-th source.
1f Bi's (i=1, 2,---, N ) are mutually irrational in the sence

that there exists no set of positive or negative integers n, , not

all zero, such that

N
Z H:9: € 0 (5:1)
i
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then the distribution of the interval between successive events in
the pooled sequence tends to the exponential distribution as N

increases. g

Proof can be made by using the Weyl's theorem in the theory of

numbers.

Theorem 3.2

Let Xn(t) be a random step process such that

k
n

X () = Y X (1) (3.2)

nr
r=1

where an(t} is a mutually independent step process with stationary
increments. Then, the sequence of the processes { Xn(t} } converges
to a Poisson process with parameter A

3

iff, for fixed t

3

k
n T
lim ) - J ¢ .(0,u)du = At (3.3)
n+o r=1 0
and
B &
lim ) - J ¢ (Lwdu=0 (3.4)
n>e r=1 0
where
Pri{ X [t} =0 }
A = lim L - (3.5
BE t>++0
and

Pr{ an(t+T) - an(r) =k , an(T] >0 }
Pr{ X (1) >0 }

¢ . (k,t) = lim (3.6)

T++0
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A more general version of Theorem 3.2 is as follows.

Theorem 3.3

The sum of infinitesinal independent step processes
k

n
X (t) = Z_ X () (3.

1

converges to a Poisson process with a leading function A(t),

iff
lim A(t,s) = A(t) - A(s) (3.
n—*+x©
and
lim B_(t,0) = 0 (3
nreo 1
hold, where
k
n
A (t,s) =] p(Lt,s) (3.
r=1
p.(k;t,s) = Pr{ X (1) - X _(s) =k } (3.
and K
n
B (t,s) = ¥y 4 1L - P (03t,s) - p _(1;t,s) } . (3.
r=1
i)
Remark
" infinitesimal " means
1im max {1- pnr(O;t,O) Tl . (3.

n-ee lfrfkn

7)

8)

.9)

10)

11)

12)

13)

Theorem 3.1 means that the superposition of regular processes
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leads to the exponential distribution of intervals. One might think
that the pooled process is close to a Poisson process, however, its
variance-time curve oscillates, which is far from that of a Poisson
process. The variance-time curve of a Poisson process is a straight
line.

The variance-time curve obtained from a neural pulse train is close
to a line, therefore, the superposition of input pulse trains in neural
systems can be regarded as that of stochastic pulse trains. Hence,
Theorem 3.2 or Theorem 3.3 is applied to the superposition of input
stochastic pulse trains due to the probabilistic activities of neurons,
and then the pooled process in one neuron can be regarded as a Poisson
process.

It is difficult at present to check up the conditions of Theorem
3.2 or Theorem 3.3 in vivo. But even the superposition of two independent
stochastic point processes makes an process which is extremely resemble
to a Poisson process. As there are many input channels in one neuron,
it may not be contradictory to approximate the pooled process by a

Poisson process.
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3.2 Discussion of Forced Type Neuron with Subtractive Inhibition

In this chapter, the discussion is made on the forced type neuron
with excitatory and inhibitory input pulse trains which are based on
the Poisson processes, and the inhibition is the subtractive type.

The method is similar to-that of the chapter 2, however, it differs
in the following respects.
a. The procedure to get the Kolmogorov's equations is somewhat different.
b. The diffusion approximation is necessary.
c. The temporally inhomogeneous problems occur when the input pulse

frequency is modulated.
3.2.1 Assumptions on the Forced Type Neuron with Subtractive Inhibition

A neuron treated here has following properties.

a. The excitatory input pulse train dE(t,ml) and the inhibitory input
pulse train dI(t,mz) are independent. Here, W, and W, denote
sample points. E(t,wl) is a sample path of the Poisson process
which causes excitatory pulse application with probability
Ne(t)At + o(At) in the interval [t,t+At). I(t,mz) is the same
with probability Ni(t)At + o(At).

b. The neuron potential Y(t,w) is right continuous, and varies e by
every excitatory pulse application and i by every inhibitory pulse

application, where e 1is a positive constant and i 1is a negative

one. And w = (ml,m2)
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c. In the period during which no input pulse is applied, the neuron
potential approaches the rest value 0 asymptotically with a time
constant T

d. The neuron potential has the lower limit T . When the neuron
potential reaches the threshold d , the neuron fires and the neuron
potential is reset to Xx .

e. After a firing, s <t < t+§ is the absolute refractory period
and the neuron potential is never influenced by inputs but decays
deterministically with a time constant T.

f£. e and -i are sufficiently small in comparison with d-x .

Discussions can be developed even when the threshold is time varying

as in the chapter 2. But the threshold is fixed here, because the
forced type neuron has the positive drift and it brings almost the same
properties as the decaying threshold.

Then a sample path of the neuron potential is expressed by the

equations (3.14) and (3.15).

t-s
Y(t,0) = (x-n)e T +n (s <t < s+6) (3.14)
t _ L=
Y(t,w) = J e U od{ E(u,0) + I(u,e,) )
s+08
_ t-(s+6)
+ { Y(s+#6,w) - n e~ T + N
(t 2 5%6) (3.15)

Since Y(s+§,w) and 1n are deterministic quantities, they can
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be omitted by transformations s+6-s, Y-n=Y, and

£ - t-u
Y(t,w) = J e o E(u,w) + I(u,w,) }
s
_ k=S
+xe U (t >s) (3.16)
is obtained. Hereafter, this case is treated. As the equation (3.16)

is an expression of a sample path, it is necessary to derive the equations
which govern the transition probability density of the neuron potential

and the first passage time probability density.

3.2.2 Discussion of the Forced Type Neuron with Subtractive Inhibition

using Kolmogorov's Equation

The forward equation is deduced in a following manner which is
different from that of the chapter 2.

There may be three transitions in a very short period [t,t+At).

(y—e+yé%', t) - (y, t+At) (if E-pulse is applied)
(y-ity™S , 1) > (y, t+bt) (if I-pulse is applied)
(y+yé%-, t) 5 (y, t+At) (if no pulse is applied)

Above three kinds of transitions occur with probabilities Ne(t)At+o(At),
Ni(t)At+o(At) and 1-{Ne(t)+Ni(t)}At+o(At) respectively.
Therefore, the equation (3.17) is obtained when At is small.
f(y,t+At|x,s) = Ne(t)Atf(y-e+yé%,t|x,s)
+ Ni[t)Atf(y-i+yé%,th,s)

+ [ 1 -4 Ne(t) + Ni(t) }at ]f(y+yé%3t[x,s] (3.17)
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The stochastic process Y(t,w) is a Markov process, therefore, the

Chapman-Kolmogorov's equation holds.

f(y,t+At|x,s) = Ipf(y,t+Atlz,t)f(z,tlx,s)dz (3.18)

Here, » is the range of the random variable. From the equation (3.18),

the forward equation is obtained.

of (y,t|x,8) _ (-1)" 3
ot = ] = [By) A . E(y,t]x,s) (3.19)
n=1
where
A (y,t) = lim = |  dzzMf(y+z,t+it]y,t) (3.20)
n At
At>+0 P .

Then, the equations (3.17) and (3.20) produce

1

Ne(t)e + Ni(t)i -

Al

AL, T) (3.21)
n . .1l

An(y,t) = Ne(t)e + Ni(t)i n 2 2} . (3.22)

Since it is assumed that e and -i are sufficiently small in

comparison with d-x , the following diffusion-approximated equation

is obtained.

Ay, tlx,s) | 3 m (t) - % H(y,t]x,s)

ot - y
1 3% 2
+ 5———§~m2(t}f(y,t|x,s) (3.23)
ay
where
m (t) = Ne(t)e + Ni(t)i (3.24)
mg(t) = Ne(t)e? + Ni(t)i% . (3.25)

By a similar procedure, the backward equation is obtained.
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_ af(y’t XJS) - .[ ml(s) - X } af(Y)t_—X’S)

aS T 9x

+

-1 mz (s) _&_f__()iib_(_,g,l (3.26)
2 2 3 2

X
The diffusion approximation makes the first passage time problem a

well-posed one. Then, the first passage time probability density 1is

obtained from the law of the probability conservation.

rd
a C

gld,tlx,s) = -3¢ | fl.tlx,s)dy (3.27)
r

But the subsequent methods differ depending on whether input pulse
trains are temporally homogeneous or not. Theretore the discussions

are separated.

a . Temporally Homogeneous Case

This is the case that Ne(t)=Ne and Ni(t)=Ni . The stochastic
process Y(t,w) becomes temporally homogeneous and f(y,t|x,s) can
be denoted by f(y,t,x) , and g(d,t]x,s) by g(d,t,x) . Then the

equation (3.23) becomes

1}‘.2 2
2 3" f(y,t.x)

Mly,t,x) _ 3 Y x) + -2 3 fly,t,x
v = ( L YE(y,t,x) + 5 ayz (3.28)
and the equation (3.26) becomes
m2 2
A (y,t,x) _ Xy 9f(y,t,x) , 2 3" f(y,t,x)
Tt = (#, =~ =] e by 2 £3.29}

From the equation (3.27), the first passage time probability density

becomes



- od
g(djt)x) = - %{J f(}",t,x)dy " (330)
E i3

From the equations (3.29) and (3.30), it can be seen that the first

passage time probability density satisfies

2
2
dg(d,t,x) _ x | 9g(d,t,x) . M2 3%g(d,t,x)
5t =(m -7 9 T3 2 (3.31)

9x
The initial condition and the boundary conditions are as follows.

For the equation (3.28),

IC f(y,0,x) = &(y-x) (2.32)

BC fd,t,x) = 0 (5.33)
m2

BC [ - (m - L)E,t,x + §§.§f£%§3i§l.]y=r = 0

The equation (3.32) means that y=x at t=0 . And the equation

(3.33) describes an absorbing barrier which means that y=d 1is the
threshold. And the equation (3.34) means that the probability flow
equals zero as y=r 1is the lower limit of the neuron potential.

For the equation (3.31),

IC g(d,0,x) = 0 (x * d) (3.35)
BC g(d,t,d) = &(t) (3.36)
BC [ EgigiEiil-]xzr -0 . (3.37)

The equations (3.35) and (3.36) mean that only the state which lay on

the threshold lies on it if time does not pass. And the equation

(3.34)

(3.37) implies that the first passage time probability densities starting

from the neighborhood of the lower limit r are equivalent.
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The mean value of the first passage time is derived from (3.31),
(3.35) A, (3.37) and
M(x) = &xd(@} = J tg(d,t,x)dt . (3.38)

0
Then, it satisfies

2
m 2
2 d°M(x) x o dM(x)  _
7 2 UM -T) T = (3-39)
dx
BC M(d) = 0 (3.40)
dM
BC [ _Hﬁil ]x=r = 0 . (3.41)
The solution is given as
( x - mlT)2
- d - X - mlT
M(x) = ____J € 2 { erf( ——)
m% X /m%"f
ro-mT
- erf( i 5 (3.42)

Remark

The analytical solution of the equation (3.31) conditioned by
the equations (3.35) v (3.37) is not obtained in time domain.
However, the solution of the special case that T = ® and 1 =-®
is obtained in time domain, and is described as

(d - x + mlt )2

2m§t

(3.43)
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But this case is rather oversimplifying as the solution of the neural

process.

b. Temporally Inhomogeneous Case

In this case, Ne(t) and Ni(t) are time varying functions and the
pulse frequency modulation exists, therefore, it is impossible to consider
the first passage time problem through the backward equation. Hence,
it becomes necessary to discuss the equation (3.27) with the aid of the
equation (3.23). The initial condition and the boundary conditions

are as follows.

I8 f(y,s|x,s) = 6&(y-x) (3.44)
BC £1d,E|%,8) = 0 (3.45)
BC [{m ) - % My, t|x,s)

+ %g—ymg(t)f(y,tlx,s)jyzr = 0 (3.46)

The equation (3.44) corresponds to that the value of the neuron potential
at time s 1s x . And the equation (3.45) means that y=d is the
threshold. The equation (3.46) implies that r 1is the lower limit
of the neuron potential.

When the pulse frequency modulation is periodic, the problem of the
phase between the period of the pulse frequency modulatioh and the
first passage time occurrs. This problem will be treated in the section 3.4

in relation to the output spike interval.
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3.2.3 Results

Here are shown the results by means of the numerical analysis.
The technique of the analysis is the finite difference method, which
is the same as that of the section 2.2.3 . And the explicit difference
is mainly used because the minute difference of the time direction is

easy to obtain. It is necessary in the temporally inhomogeneous problem.

a. Temporally Homogeneous Case

Fig. 3.1.a is the transition probability density of the neuron
potential, the original state of which is y=x=0 mv . This is obtained
as the solution of the equation (3.28). It can be understood by observing
the neighborhood of the threshold d that the neuron potential begins
to reach it from about 9 ms and completes at about 20 ms. Fig. 3.1.b
is the first passage time probability density with identical parameters,
which is the solution of the equation (3.31). Fig. 3.1.a corresponds
to the section x=0 mv of Fig. 3.1.b , from which it can be also observed
that the neuron fires almost in the duration of t=9 ms ~v t=20 ms
The transition probability density of the neuron potential shows when
the neuron potential reaches the threshold, and the first passage time
probability density shows when the neuron fires.

A curve on x-t plane of Fig. 3.1.b is the mean value of the first
passage time which is the solution of the equation (3.39), i. e. (3.42).

Fig. 3.1.c and Fig. 3.1.d show the comparison between the solutions

of the equations (3.28) and (3.31), and the values from the digital
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simulation using 10,000 sample paths which satisfy the equation (3.16).
And they are in good agreement. This implies that the diffusion
approximation is reasonable.

Fig. 3.2.a and Fig. 3.2.b are the case of T=20 ms. As the neuron
potential decays more rapidly, the first passage time becomes tardier.
Fig. 3.3.a2 and Fig. 3.3.b are the case of Ne=6 1/ms. In this case,
the first passage time becomes also tardier because the excitatory pulse

application is less frequent.

b. Temporally Inhomogeneous Case

The sinusoidal pulse frequency modulation is adopted here because
it is used in practice. Fig. 3.4.a is the transition probability
density of the neuron potential which is the solution of the equation
(3.23) conditioned by (3.44) and (3.45) as well as (3.46). Dots express
the values from the digital simulation using 5,000 sample paths.
Fig. 3.4.b is the first passage time probability density which is the
solution of the equation (3.27). In these cases, the pulse
frequency modulation is sinusoidal with the frequency 0.25 kHz. And
it is observed that the pulse-frequency-modulated information lies in

the shape of the first passage time probability density which shows

the multimodal distribution.

Remark

In order to generate sample paths which satisfy the equation (3.16),
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exponential random numbers are used in the temporally homogeneous case
and modulated exponential random numbers are used in the temporally
inhomogeneous case. On the contrary, normal random numbers were used

to generate sample paths which satisfy the equation (2.10) in the problem

of the chapter 2.
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3.3 Discussion of Forced Type Neuron with Shunting Inhibition

In the preceeding section, the subtractive inhibition which lowers
the neuron potential with a certain quantity was dealed with.

On the contrary, the shunting inhibition which divides or shunts
the neuron potential is recognized by J. Y. Lettvin (1962), then G. G.
Furman and U. Buttner et. al. discussed this type of inhibition through
analog models (1968). But signals and informations are carried by
the pulse frequency modulation mainly, therefore, discussions containing
the pulse characteristics are necessary. Moreover, it has a significant
meaning to investigate the case that the pulse trains have fluctuations
as one of random properties in the nervous system.

This section treats how input pulse trains which are based on
Poisson processes are influenced by the shunting inhibition. This
case has not been reported because a state-dependent noise exists.

And also the comparison with the subtractive inhibition is presented.

3.3.1 Assumptions on the Forced Type Neuron with Shunting Inhibition

A neuron treated here has following properties.
a. The excitatory input pulse train dE[t,wl) and the inhibitory input
pulse train dI{t,mZ) are independent. Here, w, and w, denote
sample points of a sample space Q. E(t,wlj is a sample path of

the Poisson process which causes the excitatory pulse application

with probability Ne(t)At + o(At) in the interval [t,t+At). I(t,wz)
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is the same with probability Ni(t)At + o(At).

b. The neuron potential Y(t,aﬁ" is right continuous, and an excitatory
input pulse adds e to the neuron potential and an inhibitory input
pulse lowers it so that the difference against r becomes 1/o. (o > 1),
where e 1is a positive constant, 1r is the lower limit of the
neuron potential and w = (wl,wz]. This type of inhibition is
called the shunting inhibition. On the contrary, the subtractive
inhibition lowers the neuron potential by a cerfain quantity i (<0).

c. In the period during which no input is applied, the neuron potential
approaches the rest value n with a time constant T.

d. When the neuron potential reaches the threshold d , the neuron
fires and the neuron potential is reset to x

e. After a firing, s <t < s+6 is the absolute refractory period and
the neuron potential is never influenced by inputs but decays
deterministically with a time c0n5£ant T,

f. The varying quantities of the neuron potential by an excitatory or
an inhibitory input pulse are sufficiently small in comparison
with d-x

Then a sample path of the neuron potential is expressed as follows.

t-'s
_ ST
Y(t,w) = (x -n)e + M (s <t < s+6) (3.47)
t-u
— t e
Y(t,w) = J e ! [ dE(u,w.) + Dt_1{ Y(u-0,w) - r HI(u,w,) ]
5+6 L o -
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_ t-(s+6)
+ { Y(s+8,0) - n }e~ T + n (t > s+d) (3.48)

This shows that the neuron potential is a state-dependent stochastic
process. As Y(s+8,w) and n are deterministic quantities, they
can be omitted by transformations s+§+s, Y-n=Y, then

t-u

t e
Y(t,w) = j e dE(u,0))
s
_ E-s
+ u&l{ Y(u-0,0) - r }dl(u,mz) ] + xe
(t > s) (3.49)
is obtained. Hereafter, this case is treated.

3.3.2 Discussion of the Forced Type Neuron with Shunting Inhibition

using Kolmogorov's Equation

The forward equation is deduced in a following manner which is
similar to that of the section 3.3.2
There may be three transitions in a very short period [t,t+At).
If an excitatory pulse is applied, the transition is
(y~e+yé%-, t) > (y , t+At).
If an inhibitory pulse is applied, the transition is
[{(y—r)u+r}(l+é%J , t] + (y , t+At).
If no pulse is applied, the transition is
A RS B (y , t+it).
The state transition when an inhibitory pulse is applied is explained

as follows.  If an inhibitory pulse is applied in [t,t+At) and
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Y(t+At,w) =y , Y(t,w) must have taken the value neither inhibited
nor relaxed. Therefore, the state at time t is a product of
{(y-r)a+r} and (1+é%a.

These three transitions occur with probability Ne(t)At + o(At),

Ni(t)At + o(At) and 1-{Ne(t)+Ni(t)}At + o(At) respectively, therefore,

f(y,t+At|x,s) = Ne(t)ﬂtf(y-e+y§%3th,s}
+ Ni(t)Atf[{(y—r)u+r}(1+§%J,th,s]
+ [1—{Ne(t)+Ni(t)}&t]f(y+yé%;t|x,s)

(3.50)
holds.

As the stochastic process Y(t,w) 1is a Markov process, the Chapman-
Kolmogorov equation holds. And the transition probability density

of the neuron potential is obtained from

f (y,t]x,s P L L
(yatl L - ! _n'_(ﬁ) An(y,t}f(y,tlx,S) (3.51)
n=1
where
An(y,t) = lim ﬁj dZan{y+z,t+At[y,t) . (3.52)
At~++0 P

Then, the equations (3.50) and (3.52) produce

Ne(t)e + Ni(t) (£ (y-1) - - (3.53)

n
Ne(t)e” + Ni(t) (BY) y-n)" 22 . (3.54)

An(y,t)

Since it is assumed that the varying quantities of the neuron potential,
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e and (l-0)(y-r)/o , are sufficiently small in comparison with d-x,

An(y,t) (n > 3) can be neglected and the following equation is obtained.

Efilg%iiiil = - Ne(te + Ni(e) (B (v-1) - Lhe(y,tx,s)
Yy o T
1 9° 2 1-a,2 2
+ 3 —5 We(t)e” + Ni(t) (7)) (r-1)“}E(y,t]x,s)
dy

(3.55)

The adjoint equation against the above is obtained as

_Afly,tlx,s) {Ne(s)e + Ni(s)(léﬁgtx_r) _ §Jaf(y,tlx,s)

9s T ox
1 2 ] s 2 2 a2f( t]x,s)
+ ={Ne(s)e” + Ni(s) (=) (x-r)“ ) YLtlX, (3.56)
2 o 3 2
X
by a similar procedure. And the first passage time probability

density is obtained from the law of the probability conservation.

d
gld,t]x,s) = g—tJ f(y,t]x,s)dy (3.57)
r

And the subsequent methods differ depending on whether input pulse
trains are temporally homogeneous or not. Hence the separate discussions

are made.

a. Temporally Homogeneous Case

This is the case that Ne(t)=Ne and Ni(t)=Ni . And the stochastic
process Y(t,w) becomes temporally homogeneous and f(y,t’x,s) can be

denoted by f(y,t,x) , and g(d,th,sJ by g(d,t,x). In this case,
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the equations (3.55), (3.56) and (3.57) become as follows.
28y, 8.%) - E—-{Nee + Ni[l—u}(y—r) - L3e(y,t,x)
ot ay o T 22
1 5%, 2 1-04° 2
+ E‘—‘a 2{Ne€ + Nl( o ] Cj_r) }f()’,t,XJ (358)
Y
of (y,t,x) _ . rl-a xy9f(y,t,x)
e W {Ne€ + Nl(—a—J(x—r) - T}———gg————
1o 2 i 2 2,9%£(y,t,x)
+ 5{Ne€” + Ni () (x-m) P50 (3.59)
- ax
5 d
g(d,t,x) = - BTJ f(Y3tsX)dy (3'60)
T
From the equations (3.59) and (3.60),
ag(d,t,)() . rl-a 5 ag(d,t,){)
i {Ne€ + N1[~a—J(x—r) = T}_—_?;;—___
1 2 1-a 2 2 82 (d,t,x)
+ 5{Ne +Ni&§ﬂ(k¢)}*%;?ﬁL (3.61)
X

is derived.

the equation (3.58) are

IC f(y,0,x) = &(y-x) (3.62)
BC F(d,t,x) = 0 (3.63)
BC [-(Nee + Ni(Z) (y-1) - Df(y,e,%)
2
4 %—%;{Neez - Ni(EY (y—r)?&[y,t,x)]y:r = 0. (3.64)(::>

The equation (3.62) means that

The initial

condition and the boundary conditions for

y=x at t=0 . The equation (3.63)
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means that y=d is the threshold. And the equation (3.64) implies
that y=r 1is the lower limit of the neuron potential. The initial

condition and the boundary conditions for the equation (3.61) are given as

IC g(d,0,x) = 0 (x = d) (3.65)
BC g(d,t,d) = 6(t) (3.66)
BC [95’(37Ml] ep = 0 . (3.67)

The equations (3.65) and (3.66) mean that only the state which lay
on the threshold lies on it unless time passes. And the equation
(3.67) implies that r 1is the lower limit and the first passage time
probability densities-ﬁtarting from the neighborhood of r are equivalent.
The mean value of the first passage time is defined by
®
M(x) = 5{Ed['u?)}= J tg(d,t,x)dt . (3.68)
0

From the equations (3.61), (3.65), (3.66) and (3.67) as well as (3.68),

%{Neez + Ni[lég}z(x—r)z}éiﬂgil
dx
+ {Nee + Ni (lai) (x-1) - g}% = -1 (3.69)
BE M) = 0 (3.70)
BC [ dif% s = & (3.71)
are obtained. The solution is given as
M(x) = Z(d) - Z(x) (3.72)
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where

'SZW(XJdI'
- o]
£ (x) e ) 20 0 - () x (3.73)
2 1-a 2 2
®(x) = NeB” + Nifjé—) (x-T1) (3.74)
¥(x) = Ne€ + Ni(lég)(x-r) -2 (3.75)
2¥Y(x)
Rlx) = dx
®(x) ; (3.76)
b. Temporally Inhomogeneous Case
In this case, the backward equation is not available. Therefore,

the equation (3.55) is solved under the conditions

IC fly,slx,s) = &(y-x) (3.77)
BC f(d,t|x,s) = 0 (3.78)
BC [-iNe(t)e + Ni(8) () r-1) - Decy,t]x,9)
2
+ 5 5 e()e? + Ni(0) (5 oLt =0 . (3.79)

Then, the equation (3.57) is used to obtain the first passage time

probability density.

3.3.3 Results

Here are shown results on neurons with shunting inhibition by

means of the numerical analysis, and the comparison with subtractive
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inhibition is made.

a. Temporally Homogeneous Case

Fig. 3.5.a shows the transition probability density of the neuron
potential which lay on y=x=0 mv at time 0 ms . This is the solution
of the equation (3.58) conditioned by the equations (3.62), (3.63) and
(3.64). Dots are the values from the digital simulation by 5,000
sample paths which satisfy the equation (3.49). Fig. 3.5.b is the
first passage time probability density with common parameters to Fig. 3.5.a
and is the solution of the equation (3.61) conditioned by the equations
(3.65), (3.66) and (3.67). Fig.3.5.a corresponds to the section of
x=0 mv in Fig. 3.5.b . For example, the neuron potential begins
to reach the threshold d=10 mv from about t=5 ms and completes to
reach it at about t=18 ms. This can be observed from the section
of x=0 mv in Fig. 3.5.b . A curve on the x-t plane is the mean
value of the first passage time which is the solution of the equation
(3.69), i.e. (3.72).

Fig. 3.6.a and Fig. 3.6.b are the transition probability density
of the neuron potential and the first passage time probability density
respectively, in which case «=1.012 and the shunting inhibition is
stronger, therefore, the time when the neuron potential reaches the

threshold becomes tardier.

b. Temporally Inhomogeneous Case
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Here is treated the case that the input pulse trains are modulated
sinusoidally. Fig. 3.7.a shows the transition probability density of
the neuron potential which lay on y=x=0 mv at time t=s=0 ms , which
is the solution of the equation (3.55) with conditions (3.77), (3.78)
and (3.79). Dots are the values from 5,000 sample paths. Fig. 3.7.Db
is the first passage time probability density. It is obtained in
the same manner as Fig. 3.7.a . In this figure, an important property,
the multimodality, is appeared in the first passage time probability

density according to the pulse frequency modulation of inputs.

¢c. Comparison of Shunting Inhibition with Subtractive Inhibition

Fig. 3.8 shows the comparison of both inhibitions with the common
parameters except o and 1 in the temporally homogeneous case.
A continuous curve is the case of the shunting inhibition which satisfies
the equation (3.58) and a dotted line is that of the subtractive inhibition
which satisfies the equation (3.28). The difference between both
types of inhibitions depends on x which is the reset value of the
neuron potential. And this is due to the fact that the inhibition
value of each inhibitory pulse is large when the neuron potential is
close to the threshold, and small when it is close to the lower limit.
Therefore, in Fig. 3.8 , the first passage time of the shunting inhibition
is tardier than that of the subtractive inhibition when x 1is close
to d , and the property is reversed when x is close to r . And

the mean value of the first passage time of the shunting inhibition
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shows stronger nonlinearity than that of the subtactive inhibition.

In the next place, the temporally inhomogeneous case is compared.
Fig.3.9 is the first passage time probability density in the case of
the subtractive inhibition, which is the solution of the equation (3.27)
using the equation (3.23). And this has the common parameters to
those of Fig. 3.7.b except o and i . The difference between both
also depends on x , and in these figures when x is close to d ,
the first passage time probability density of the subtractive inhibition
(Fig. 3.7.b) is sharper than that of the shunting inhibition (Fig. 3.9)
because the inhibition effect of the subtractive one is smaller than
that of the shunting one. And this property is reversed when x

is close to r

Remark

In this section, the problem of the state-dependent process was
presented and discussed. In that problem, the correction term in the
differential generator is required generally. But it was not introduced
in this section, because the method of obtaining the differential generator

is based on the state transition and it contains the correction procedure.
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3.4 Output Spike Interval Density

There is a case that the stochastic input pulse trains are modulated
periodically. Such a situation is made in order to study the information
processes in nervous systems by applying a periodical stimulus. In
this case, it is of great importance to calculate the output spike
interval density because it is the quantity which characterizes the
periodic pulse frequency modulation and can be measured easily in an

in vivo experiment.

3.4.1 Representation of Output Spike Interval Density

The first passage time probability density and the output spike
interval density are equivalent to each other in the temporally homogeneous
case, however, they differ in the inhomogeneous case. In the periodic
inhomogeneous case, their difference is concentrated to the fact that
the input phase is always fixed in the first passage time problem but
it is regarded as a random variable in the output spike interval problem.
Namely, the input phase differs for every spike and it distributes
statistically.

Then, it becomes necessary to consider the method to approximate
the output spike interval density using the first passage time probability
densities with various phases. The first passage time probability density
depends on the initial phase of the input signal which is denoted by
¢S at time s . The phase dependent first passage time probability

density is denoted by
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g¢5:¢(d,t|x,s}

Clearly,

g¢s:¢(d,t+slx,s) = g¢0:¢(d,t|x,s) ; (3.80)

For brevity, the right side of the equation (3.80) is redenoted
by h¢(d,t,x) , which is the probability density with respect to t
that the initial phase of the inputs and the state are ¢ and x
respectively and the neuron potential reaches d after time t . Then
the output spike interval density is defined by

2m
h{d,t,x) = Jo h¢(d,t,x)q(¢)d¢ (3. 81}

where q(¢) is the probability density of the input phase. And it
is obtained by the following procedure. The conditional probability
density of two contiguous input phase y and ¢ is introduced and

denoted by q(¢|¢). The relation of ¥ and ¢ is illustrated in

Fig. 3.10 . Then clearly

qW(Pad) = qlvqu) . (3.82)
Hence,

q@|¢) _

M¢¢qu} = q(¥) . (3.83)

By integrating with 1 ,

q(9) = 7 - (3.84)

q(¢|yv)
JO q({¢) dv

is obtained.
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Then the problem of q(¢) becomes that of q(¢|w) and q(w[¢].
And q(¢’w) can be obtained from hw{d,t,x) by overlaying itself
with modulo T which is the period of the pulse frequency modulation.
It is necessary to calculate the phase angle Yy which corresponds
to the first passage time.

T

hw(d:t;x) Ed Ehw[d"\()x) (385)
And ’Fm(u) is defined by
@ = 7 &X[== h (d,2km+a,x)u(2km+a) ] (3.86)
%"P k=0 = 2T ¥

where @ is the operator which shifts a function of o to the left

by 2m , and

1 0 <o <2m
u(2km+a) = (3.87)
0 otherwise

The equation (3.86) is the prxobability density of o that the output
is spiked when the angle gains y=o+2km (k=0,1,2,***) under the condition
that the input phase is ¢ .

Then between two contiguous input phases P and ¢ , the following
relation holds.

Y - q 0<ua

o = (3.88)
2m + U -« Y <a < 7

A
<

Therefore,
@ww - ) 0<¢ <y
q(ely) = (3.89)
fyer+v -9 y<o<oam
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Using the equations (3.81) and (3.84) as well as (3.89), the output
spike interval density is obtained. For the numerical calculations,
it is necessary to approximate an integration by a summation and also
truncate k in the equation (3.86). Then, the output spike interval

density can be expressed by

2m

h¢(d,t,x)
h{d,t,x) = > do (3.90)
J 900]¥) g
0 Jo aWT®)
and approximated by
h¢ (d,t,x)

i 5

o n PR IY)
32-1 Pr(p, [6,)

(3.91)

He~—1

where Pr(¢i|wj) is defined by Pr(¢, - é%— 20 <o, é%—f wj) :

and A = AP = 2%—. The accuracy of this approximation depends on

k in the equation (3.86) and n in the expression (3.91). But it

is not necessary to require so large k or n , because the expression
(3.85) takes very small value when vy is large, and q[¢|¢) is smooth

enough (see the section 3.4.2)

3.4.2 Results

Here is shown an examples of the output spike interval density
according to the procedure in the section 3.4.1 . And the method
is applied to the forced type neuron with the subtractive inhibition.
The approximation is performed with k=8 and n=5 . Fig. 3.11.a

shows that the first passage time probability density differs depending
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on the input phase of the sinusoidal pulse frequency modulation.

From these h¢[d,t,x) 's , the approximated value of the input phase
probability density is obtained. Fig. 3.11.b shows this. Bold poles
are the approximated values which are constructed from h¢(d,t,x) 's

of Fig. 3.11.a , and slender poles are the simulated values from 4,000
sample paths which satisfy the equation (3.16). The bold ones are

used because it has a significant meaning that the output spike interval
density can be obtained from the first passage time probability densities
without using any values of the digital simulation. Then from the
expression (3.91), the output spike interval density is obtained and

it is shown in Fig. 3.11.c . Slender poles show the values from the
digital simulation using 4,000 sample paths and a continuous curve

is the approximated value. They are in good agreement.
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3.5 Concluding Remarks

In this section, several problems on forced type neurons were

discussed. The superposition of pulse trains were presented in the
section 3.1 . The first case was that of deterministic pulse trains
and the second case was that of stochastic pulse trains. The second

one should be applied to the problem of neurons because there is an
irregularity in neural pulse trains which is not a superficial appearance
of complex information codes.

In the section 3.2 and 3.3 , the multimodality of the first passage
time probability density was presented when the pulse frequency modulation
existed. This property corresponds well to the data reported by
N. Y.-S. Kiang et. al. and obtained for the first time by the author
of‘this dissertation as the solution of the first passage time problem.

Several authors treated the shunting inhibition, however, their
discussions did not involve the time characteristics. In the section
3.3 , the éhunting'inhibition was discussed with dynamics of the neuron
potential. In such a case, the problem of the state dependent noise
arose. The neuron potential with the state dependent noise was
formulated and analysed for the first time by the author of this dissertation.
And also the comparison between the subtractive inhibition and the
shunting inhibition was tried and it was reported that the difference
between them depends on the reset value of the neuron potential.

In the section 3.4 , the output spike interval density was discussed.

95



K. Dietz had considered Markov chains which generate multimodal interval
densities. But the problem establishment is not feasible as that
of neurons. On the contrary, Fhe problem in the section 3.3 was fully
combined with neurodynamics. And the relation to the first passage
time probability density was mentioned. This 1s a new trial.

In addition to the spike interval density, the joint interval
density is used to examine the information in neural pulse trains.
The equation which governs this quantity is not obtained at present
because of the complexity.

It is possible to construct a model which contains both natures
of the spontaneous type and the forced type. In this case, the neuron
potential is described by a generalized stochastic process and the
probability density functions are governed by the Kolmogorov-Feller's
equations. But the diffusion approximation is also necessary because
of the wellposedness of the first passage time problem, and little
changes in the level of the probability density shape appear except

the vanishment of the sharpness.
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CHAPTER FOUR

RECIPROCAL INHIBITORY PAIRS

4.1 Neuron Populations

The preceeding chapters treated the behaviors of single neurons
and considerable amount of properties were presented. But, it is
still necessary to investigate how input pulse trains are converted
by multiple neurons, i. e. the dynamics of the signal processing by
neuron populations. ( The term " neuron population " was used to
represent a session of 1973-IFAC SYMPOSIUM. )

The motivation for this work originates from the belief that senior
functions in nervous systems depend on cooperations by neural connections.
And the researches in this field are made to clarify the relevance
between the structure and phenomena at present. This direction of
researches should be exceedingly developed in the near future too.

Principal treatments of neuron populations are as follows.

W. Reichardt et. al. discussed lateral inhibitions using analog models
without time characteristics (1962). R. F. Reiss treated reciprocal
inhibitory pairs and he considered the effect of noise a little. But
it does not make use of stochastic theory, therefore, the results

on irregular properties are insufficient (1962). D. M. Wilson et. al.

also considered reciprocal inhibitory pairs by means of electronic
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circuits (1965). But the discussion is confined to observe the firing
patterns. U. Kling et. al. proposed the problem on neuron rings (1968)
and later R. Suzuki et. al. compared such a structure-with that of a
starfish (1971). He introduced a noisy neuron, however, the discussion
of companien neurons drived by it still lies in the deterministic
methods.  Another trial is R. J. MacGregor's work on ladder nets

as the models for reticular-like networks (1971). His discussion is
made on the sensitivity of the nets to the input patterns. An important
contribution to the statistical analysis of neuron populations was

made by D. H. Perkel et. al. (1967). They used pulse cross correlation
(1968). But the backward connection was not treated. Seeing above,
one can notice that the stochastic approaches of neuron populations are
very few neverthless stochastic properties have roles in the signals

of the nervous systems.

Here are considered two types of reciprocal inhibitory pairs because
they are fundamental ones in the multiple systems which have the backward
connections. And the stochastic properties are investigated, which
have the fundamental importance in the information processing in the

nervous sys tems.
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4.2 Cross Correlation of Pulse Sequences

In the discussions of single neurons, the first passage time
probability density and the output spike interval density are effective
measures and describe the neural behavior completely. But in the
multiple systems, other statistical quantities are necessary.

A cross correlation function of pulse sequences is convenient
to see the mutual relation between two neurons. It was introduced
by D. R. Cox and P. A. W. Lewis (1966) and discussed by D. H. Perkel

et. al. (1967). The pulse cross correlation CAB(A) is defined by

C,,(A) = 1im Pr{ an event of B in [t.+A,t.+A+At)
AB 0 0
At~>+0

| an event of A at t. }/At . (4.1)

0
The right side of the definition (4.1) can be expressed by cross interval

densities and the equation (4.2) is obtained.

co

g™ = 1 5 (i %0 (4.2)

j =-0

where Ei(k) is the cross interval density of order 1 . The cross
interval of order i > 0 means the interval from a certain pulse

to 1i-th preceeding pulse in another pulse train. When i 1is a negative
integer, it is the interval to 1i-th preceeding pulse.

The cross correlation has a useful symmetry relationship.

G B ()

(4.3)
Hg Ha

where and u are the mean interspike intervals of the train A
B p

Ha
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and the train B respectively. Therefore, it is sufficient if one

side is obtained.

Remark

If train A 1is perfectly random and there is no cross correlation,

the right side of the definition (4.1) is described by

lim  Pr{ an event of B in [t +A,t _+A+At)
0 0
At-++0

| random instant ty M ae
— LIB - (4.4)

And as a special case, if two trains are homogeneous Poisson trains

T,,(A) 1s equal to Mg which is a constant.

AB
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4.3 Discussion of Reciprocal Inhibitory Pairs

4.3.1 Description of Reciprocal Inhibitory Pairs

Two kinds of systems are shown in Fig. 4.1 . Their driving input
forms are different. The system 1 has two excitatory driving inputs

which are statistically independent. They are denoted by dEA(t,wA)

and dEB(t,wB) . The system 2 has one common excitatory input and
it advances in two ways, one of which includes a time delay. It is
denoted by dE(t,w) . EA(t,wA) , EB[t,wB) and E(t,w) are sample

paths of Poisson processes whose excitatory pulse applications occur
with probability NeA(t)At + o(At) , NeB(t)At + o(At) and Ne(t)At +
o(At) respectively in the interval [t,t+At) . When the neuron A
fires the inhibition occurs in B and vice versa.

In the system 1, sample paths of the neuron potentials of the

neuron A and the neuron B are expressed as

t S M
- T —
Y, (tw) = J £ d{ B, () + Ip(u,w) }
A
) t—SA
+ xe (t. = sA) (4.5)
_ t - == _
YB(t,w) = J € d{ EB(u,mB) + IA(u,wJ ¥
%5
t—sB
e
+ XE (t 2 SB) (4.6)
where w = [wA,wB) ; Sy and SB are the times when the spikes

104



sxted Axo3Tqryutr Tedoxdroay 1'v "814

¢S 1S

5 &

o : Ael9Q [}—
uorlosuuod Axozrqryul O—
UOT]D2UUO0D AJOJBITOXH @—

105



of the neuron A and B occured previously. IA(t,ED is the step process
which is lowered by a certain quantity 1 , when the neuron A fires.
IB(t,ﬂD is also understood in the same manner.

In the system 2, sample paths of the neuron potentials of the

neuron A and the neuron B are expressed as

b . =D
YA(t,wJ = JS e ' d{ E(u,w) + IB(u,w) }
& t-s
- A
yxe T (€ 2 SA] (4.7)
o . U
Yolt,w) = JS e dl E(u-6,w) + INCH) }
B ) t—SB
v xe " (t i:SB) (4.8)

where 6 1is the value of time lag.

In the cases such as the system 1 and the system 2, it 1s not
possible to make a parallel discussion to the chapter 2 or the chapter
3. This is because the differential generators which govern the
probability density functions can not be obtained as the neuron potentials
of these cases are more complicated than those of preceeding chapters.
This difficulty originates from the backward connections.

But the digital simulation is available even in such cases because
the dynamics of the sample paths of the neuron potentials are described

by the equations (4.5) ~ (4.8).
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4.3.2 Results

Here are shown the results by means of the digital simulation.
Each result used just 10,000 spikes of the neuron A and the neuron B,
i. e. about 5,000 spikes for each neuron. And the equation (4.2)
was used in order to obtain the cross correlation because probability
density functions of output spike intervals are easy to obtain. The
results are presented separately depending on whether the input pulse

trains are temporally homogeneous or not.

a. Temporally Homogeneous Input

There are two kinds of data, the output spike interval density
and the cross correlation. The cross correlation is obtained by
summing up the cross interval densities of all orders except zero.

In this case, the input pulse trains are based on the homogeneous
Poisson processes. Therefore, their spike interval densities show
exponential distributions. That is to say, the distributions are
unimodal. And the matter of interest in this section is to investigate
how the characteristics of inputs are converted by the system 1 and
the system 2.

Then, the results are shown and the discussion of each system
and the comparison of both systems are made. In this case, the parameters
of the inputs of both systems are chosen identically.

Fig. 4.2 is the output spike interval density of the system 1
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of the neuron A. This is almost the same as that of the neuron B
because two neurons have a homogeneous structure.

Fig. 4.3.a is the output spike interval density of the neuron A
of the system 2 whose time lag is 8 ms . Fig. 4.3.b is that of the
neuron B in the same case. In the system 2, the output spike interval
densities of the neurons A and B differ. The difference is observed
from the envelopes of the output spike interval density too. In
the system 1, it has a longer tail than that in the system 2. This
difference can be observed more clearly by using the cross correlation.
This is reported later.

It is a quite important nature that above output spike interval
densities show the multimodal distributions neverthless the inputs
are temporally homogeneous Poisson type. That is to say, stochastic
rhythms emerge by the reciprocal inhibitions. And the period of
this rhythm depends mainly on the relaxation time constant of the
neuron potential. Fig. 4.4 shows such a property.

Then the group behavior is investigated using the pulse cross
correlation. Fig. 4.5 is the cross correlation of two output pulse
trains in the system 1. And Fig. 4.6.a ~ Fig. 4.6.d are the cross
correlations of two output pulse trains in the system 2 whose time
lags are 1 ms , 4 ms , 8 ms and 25 ms respectively. The cross
correlation of these systems is very weak near A=0 ms . This means
that the neuron A and the neuron B seldom fire simultaneously because

of the reciprocal inhibitions. In Fig. 4.6, a conspicuous peak is
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appeared. The location of this sharp peak almost corresponds to the
time lag and this is natural, however, the correspondence is not held
when the time lag 6 1is small. The reciprocal inhibitions show
such a property. When © 1is proper, the peak becomes very sharp
(Fig, 4.6.) . This means that two output pulse trains are more
co-phasic than than other cases. And when 6 becomes larger, the

system 2 becomes equivalent to the system 1 (Fig. 4.6.d)

b. Temporally Inhomogeneous Inputs

Here are shown the results when the inputs are modulated sinusoidally.
Fig. 4.7 is the output spike interval density of the neuron A of the
system 1. This is also almost the same as that of the neuron B.
The pulse frequency modulation is 80 Hz. Fig. 4.8.a is the output
spike interval density of the neuron A of the system 2 whose time lag
is 6.25ms , 1. e. m 7rad . Fig. 4.8.b is that of the neuron B
in the same case. In these cases, all structures and input natures

are the same as those of the temporally homogeneous case except the

pulse frequency modulation. The output spike interval densities show
the multimodality according to the pulse frequency modulation. And
another multimodality can be also seen. That is due to the rhythm

generated by the reciprocal inhibitions.
Then, the group behavior is discussed through the cross correlation.

Fig. 4.9.a is the cross correlation of two output pulse trains in

the system 1. And Fig. 4.9.b is that of the system 2 whose time
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lag is 6.25 ms , i. e. 7 rad . In these cases, the effect of the
pulse frequency modulation can be observed. The oscillating trend
of the cross correlation means that the output of the companoin neuron
is spiked with high probability according to the pulse frequency modulation.
Other properties are the same as those of the temporally homogeneous
inputs.

In the temporally inhomogeneous case of the system 1, two input
signals may be modulated differently. Fig. 4.10.a and Fig. 4.10.b
are the output spike interval densities of the neuron A and the neuron B
respectively. In this case, the pulse frequency modulations of excitatory
inputs are 80 Hz and 20 Hz . Each output spike interval density
reflects the pulse frequency modulation. Fig. 4.11.a is the cross
correlation of the system 1 whose excitatory pulse frequency modulations
occur with frequencies 80 .Hz and 40 Hz . Fig. 4.11.b is the case
with frequencies 80 Hz and 20 Hz . These figures show that the
lower frequency of the pulse frequency modulation plays main role in

the pulse cross correlation of the reciprocal inhibitory pair.
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4.4 Concluding Remarks

Reciprocal inhibitory pairs were discussed as one of the problems
of neuron populations. The discussion was made with a desire to
realize the property of the interference of pulse trains and the role
of pulse distributions.

There were two kinds of reciprocal inhibitory pairs. One is
the system that each neuron has an independent Poisson input pulse
train, and the other is the system that each neuron has a common Poisson
input pulse train, which is applied with a time lag to one neuron
of the pair. And it was confirmed that these reciprocal inhibitory
pairs show multimodal output spike interval densities in spite of temporally
homogeneous Poisson input pulse trains. This means that the stochastic
rhythms emerge by these systems because of the interference of pulse
trains. And the rhythms in this case have the smoothness which can
not be appeared in the deterministic case. The smoothness is one
of the important natures of the systems in the living body, therefore,
the stochastic modeling and discussions are necassary. Two systems
in this chapter do not differ as long as they are compared through
the mean values of output frequencies, however, the cross correlations
are very distinctive reflecting the interference of pulse trains.

This property do not appear in the deterministic case.
Furthermore, temporally inhomogeneous inputs were treated. In

this case, the problem of two different pulse frequency modulations
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was presented in the first system. And it was reported that the

lower frequency of the pulse frequency modulation plays the main role.
Perhaps it may not be refused to express the output spike interval

density of the first system by obtaining the probability density of

the state at the moment when the companion neuron fires. Further

discussion is a prospective problem and worthy to try.
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CHAPTER FIVE

SUMMARY AND CONCLUSION

The stochastic modeling of neurons and neuron populations were
discussed. Three subjects, i. e. the spontaneous type neuron, the
forced type neuron and the reciprocal inhibitory pairs were considered.
And the numerical techniques were used as well as the analytical ones.

In this work, the attention was focused on the stochastic properties.
The necessity of the stochastic treatment arises from essential irregularity
which is discussed briefly in the chapter one. "" What is the prime
of the fluctuation ? " remains a matter of discussion, however, the
irregularity in the nervous system is not the superficial appearance
of complex coding of the information.

Since the M-P model explained the logical nature of neurons,
an idea that the nervous system can be understood thoroughly by the
deterministic method was fixed in many researchers involuntarily.
But the stochastic method provides more complete understanding of the
properties of the neural systems.

The new trials and results presented in this work are as follows.
In chapter two, the problem of the spontaneous type neuron was formulated
exactly and discussed. Since the neuron potential is treated as a
random variable, the problem of firing is translated into the first

passage time problem. The discussion was made on the transition
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probability density of the neuron potential and the first passage time

probability density. They were obtained from the Kolmogorov's equation
and the law of the probability conservation. In this case, the variation
of the threshold was reduced to the moving boundary problem. Examples

of both probability densities were presented and they explained the
stochastic property of the irregular spontaneous activity.

In chapter three, neurons with stochastic input pulse trains were
discussed. Poisson input pulse trains were adopted as inputs and
the appropriateness of this assumption was considered. It is assured
by the limitting theorems on the superposition of pulse trains.
Subsequently, the mathematical models of the forced type neurons with
excitatory and inhibitory input pulse trains which were based on the
Poisson processes were considered. Two kinds of inhibitions were discussed.
One is the subtractive inhibition whichllowers the neuron potential
by a certain quantity, and the other divides @r shunts it. Both cases
were considered and analysed using the transition probability density
of the neuron potential and the first passage time probability density
which satisfy the Kolmogorov's equations and the law of the probability
conservation. In the problems of the forced type neurons, the following
matters are distinct from those of the spontaneous type neurons. They
are the necessity of the diffusion approximation of the differential
generator for the wellposedness as the first passage time problem,
the comparison problem of two types of inhibitions and the temporally

inhomogeneous problems due to the pulse frequency modulation. On the
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diffusion approximation, the solution was compared with the digital
simulation and a good agreement was obtained. On the comparison of
two types of inhibitions, the difference between them depends on the
reset value of the neuron potential. And it was reported that the
first passage time probability density shows the multimodal distribution
when the pulse frequency modulation exists in the input pulse trains.
This multimodality corresponds to the input signal. In the case
of the periodic pulse frequency modulation, the output spike interval
density was considered. Such a situation is set in order to study
the information processes in neurons by applying a periodical stimulus.
The output spike interval density was constructed from the first passage
time probability densities for various input phases. This value shows
the multimodal distribution too. Such a property is agreed with
the tendency obtained in vivo.

In chapter four, two kinds of reciprocal inhibitory pairs
were considered as the problems of neuron populations. In the
first system, each neuron has two independent Poisson input pulse trains.
And in the second system, each neuron has a common Poisson pulse train,
which is applied with a time delay to one neuron of the pair. These
two systems showed multimodal output spike interval densities in spite
of the temporally homogeneous Poisson input pulse trains. This fact
means that the stochastic rhythms are generated by such systems.
Then the comparison between these systems was tried. They do not

differ as long as they are compared through the mean values of output
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frequencies, however, the cross correlations are very distinctive
reflecting £he interference of pulse trains. Furthermore, temporally
inhomogeneous inputs were treated. In this case, the input pulse train
with different pulse frequency modulation may be applied to each neuron.
It was reported that the lower frequency of the pulse frequency modulation
plays the main role.

By this work, the stochastic methods to discuss the neural activities
were considerably developed. Of course deterministic methods do not
lose their footing, however, the introduction of stochastic methods 1is
very helpful when the neural coding is discussed. That is because
it is impossible to express an intermediate value or a continuous
signal by deterministic pulse trains.

It is remarkable that the nervous system holds high functions
as a whole in spite of the local irregularity. The study on this
subject is the core problem of further works. One of the clues is
to investigate the minimal structure which corresponds to a peculiar

function.
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APPENDIX A

A SUFFICIENT CONDITION FOR MARKOV PROPERTY

In the capter two or three, it is necessary to check up the Markov

property. The following theorem is useful.

Theorem

Let X(t), a £t <Db be a stochastic process which moves in a second
countable, locally compact space S. If there exists a random variable Y
which is independent of X(71), a < T <t for every (a<) t < s (<b) , and

X(s) «can be written as a B-measurable function of X(t) and Y,

then, X(t), a <t < b is a Markov process. b4

Proof is presented in K. Ito, '"Probability Theory', Iwanami (1952).
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APPENDIX B
INTERVAL DENSITY OF PERIODIC POISSON PROCESS

In the chapter three, the periodic Poisson input pulse train was

adopted. Its interval density is described as follows.

A pulse occurs with probability Ap( 1 + asinwt ) in the interval
[ t, t + At ). Then, the distribution of the intervals between two

successive pulses 1is given by

-Aot 2 ga . wt
£ { Iq¢ —— sin—— )
wt 2 pa . wt
- acos— I.( —— sin— )}

where Iy, and I; are modified Bessel functions.

Details are found in D. M. Willis, Biometrika 51, 399 (1964).
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APPENDIX C
GENERATION OF MODULATED EXPONENTIAL RANDOM NUMBERS

In the chapter three, modulated exponential rancom numbers were
used in order to generate sample paths of neuron potentials. They

are obtained as follows.

a. Let uy be a uniform random number over [ 0, 1 ].

b. Then an exponential random number with a parameter Ao is made by

c. Let the pulse frequency modulation occur with Ag( 1 + asinwt ).

Then, 1:.l which satisfies

t.
£, = { (1 + asinwt )dt
tia
or
5 t.
E.=[t - ocoswt ]

Ty

is the modulated exponential random number.
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