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Big data concepts

True big data has an inaccessible size ⇒ No way to manage.

3V for big data: Data’s {Volume, Velocity, Variety}
need to be manageable (D. Laney, META Group, 2001).

4V: Veracity (by Villanova University).

5V: Value (by HRBOSS blog).

So many requirements for human power alone.

Machine learning strategies:
Novel methods inspired by unprecedented problems.    

The fusion with crowd sourcing will also be mentioned.
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Concept 1: Incomplete data

Perfectly measured data are incomplete yet!
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Concept 2: Good models

(1) Essentially, all models are wrong, but some are useful.              
(G. E. P. Box; In G. E. P. Box and N. R. Draper, Empirical model building and response 
surfaces, p.  424, John Wiley & Sons, 1987).

(2) Good models mismatch well, and are therefore dependable.  
(The presenter of this talk, Y. Matsuyama).
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modeling VQ or
vector k-means

R. M. Gray, A. Buzo, A. H. Gray, Jr., and Y. Matsuyama, Distortion measures for speech processing, 
IEEE Trans. vol. ASSP-28, pp. 367-376, 1980.

space of  m-th order AR processes

[Example]
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Case 1: Missing is a weight vector (least squares)

Don’t underrate simple classic methods.       Data size is big.
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Case 2: Missing is a boundary set (supervised)

Fig.  Support vector machine with a soft margin.
Prof. V. Vapnik on 2013-11-26 in Tokyo. 
Photograph allowed by himself.           
No usage other than academic one is 
allowed (© Y. Matsuyama).

Fig. An SVM example using LIBSVM 
of C-C. Chang and C-J. Lin of NTU.
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Case 3-1: Missing is a partition set (unsupervised)

 Vector k-means (vector quantization) is much alive for structurization of big data.

 J. Linde, A. Buzo, R.M. Gray, IEEE Trans. COM, vol. COM-28, pp.84-95, 1980 (batch mode).

 Y. Matsuyama, R. M. Gray, IEEE Trans. vol. IIT-27, pp.31-40, 1981 (tree + batch VQ).

 Y. Matsuyama, R. M. Gray, IEEE Trans. vol. COM-30, pp. 711-720, 1982 (tree + inverse filter VQ).

 T. Kohonen, Leaning vector quantization, In The Handbook of Brain Theory and Neural Networks., 
pp. 537–540. MIT Press, Cambridge, MA, 1995 (successive mode, or stochastic gradient descent). 
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Case 3-2: Missing is a boundary set (unsupervised)

 Vector quantization was unified as a competitive learning algorithm 
for composite cost functions.                                                            
(Y. Matsuyama, Harmonic competition:  A self-organizing multiple criteria optimization, 
IEEE Trans. NN, vol. 7, pp. 652-668, 1996.)
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Case 3-3: Missing is an exemplar set (unsupervised)

 Similarity matrix      exemplars and clusters associated with them. 

 Convergence is not yet proved rigorously (but, often effective).

 For time series, we need its sophistication.

 Affinity propagation (similar to VQ, but an unspecified number of 
exemplars is found).                                                                                         
(B. J. Frey and D. Dueck, Clustering by passing messages between data points, 
Science, vol. 315, no. 5814, pp. 972-976, 2007.

Fig.. Exemplars found by affinity propagation.
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Case 4-1: Missing information is more general (unsupervised/supervised)

 EM algorithm (expectation-maximization algorithm): 

This is regarded as a champion algorithm which estimates missing information.

(A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from Incomplete data via 
the EM Algorithm, J. Royal Statistical Society. Series B, vol. 39, pp. 1-38, 1977).
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Case 4-2: α-EM algorithm (EM algorithm is yet a special case)

Y. Matsuyama, 
The alpha-EM algorithm: Surrogate likelihood maximization using alpha-
logarithmic information measures, IEEE Trans. On Information Theory, vol. 49, No. 
3, pp. 692-706, March, 2003. 
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them to be
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(2) This term is nonnegative for α<1.

(3) Keep this term 
nonnegative

The case of α = -1 is the traditional log-EM algorithm.
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Case 4-3: Relationship between EM and vector k-means (VQ)

Fig.  Gaussian mixture model.

 α-EM outperforms log-EM on 
the convergence speed.

 EM-family    vector quantization

α-EM log-EM

Fig.  Convergence of α-EM and log-EM.

iterations
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Case 4-4: α-HMM estimation

Fig.  Relationship of alpha-HMM and log-HMM

 Y. Matsuyama, Hidden Markov model estimation based on the alpha-EM algorithm: 
Discrete and continuous alpha-HMMs, Proceedings of International Joint Conference on 
Neural Networks, pp.809-816, San Jose, CA, 2011.

 A. Rahimi’s correction to L. Rabiner’s flaws on scaling was generalized too.

Fig.  Alpha-HMM vs. log-HMM (Baum-Welch) for
brain signals (NIRS signals).
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Case 4-5: ICA (missing are hidden components).

 R. Yokote, Y. Matsuyama, Rapid algorithm for independent component analysis, J. Signal and Info. 
Proc., vol. 3, pp. 275-285, 2013.

 Fast ICA was by A Hyvärinen; Fast and robust fixed-point algorithms for independent component 
analysis, IEEE Trans. NN, vol. 10, No. 3, 1999, pp. 626- 634., 1999.

Fig.  Rapid ICA
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Case studies: Unstructured data management 

 Tremendous amount of data is accumulated 
continuously.

 Mostly, data are unstructured.

 Some are manually labeled, however, labels are 
usually personal.

 Structurization by machine learning strategies is 
effective and fashionable.

 New target problems ⇒ new methods
⇒ new theory



17

(1) Similar video retrieval: Numerical labelling

 Video retrieval: One of the most familiar target to be structured.

 The size of each element is already big.

 Lengths are different.

input

output

video

similarity computation

feature extraction

ranking by similarity

system

Fig.  Similar video retrieval.
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(1-2) Similar video retrieval: Similarity

How do we define similarity measures? 

Fig.  Needleman-Wunsch algorithm in bioinformatics. 
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(1-3) Similar video retrieval: Similarity

Too simple: L-distance (Levenshtein distance) from 
another big data area is not applicable.

Only letter-wise.

Not context-aware.

Exemplars are expressed by floating-point numbers.

A more general distance measure・・・M-distance*.

Each video can be numerically labelled using 
positions and expressions of exemplars.

(*) Y. Matsuyama and M. Moriwaki
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(1-4) Similar video retrieval: Similarity

 How do we express each as a vector.

 You can find many effective ways.

 We here show you an example by CSD.

Fig.  A conceptual CSD (color structure descriptor).
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(1-5) Similar video retrieval: Exemplars

 Key frames ⇒ exemplars ⇒ their numbers are variable.

 Each frame is a feature-extracted vector such that

 Then,        is in a simplex.

 Exemplars are in this space. 
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Fig.  2D simplex.
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(1-6) Similar video retrieval: Exemplars (cnt)

elapsed time considered

not considered

Fig.  Exemplar frames reflecting time course. 
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(1-7) Similar video retrieval: How to find such exemplars?

Fig.  Time bound affinity propagation, w=20 (computed by Mr. M. Moriwaki).

time (frame number)

am
pl

itu
de

 Time-bound affinity propagation (TBAP) ・・・ windowing.

 Exemplars per se are found.

 The number of exemplars is variable.
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(1-7) Similar video retrieval: How to find such exemplars? (cnt)

time course

Fig.  Harmonic competition type (generalized vector k-means or VQ).

 A class of the harmonic competitive learning.

 Generalized vector k-means are found.

 Number of competitive representatives is pre-specified.

 Each exemplar is found as the nearest frame to the representative. 
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(1-8) How can we compare exemplar sets?

 M-distance 1 (context-aware global alignment distance)

 Naming is after the Levenshtein distance (edit distance).

 L-distance was a very special case:

 Discrete alphabet

 Identical or not identical・・・{0, 1}

 Letter-to-letter (no ability reflect contexts)

 Gap penalty is only letter-wise.

 M-distance 2 (context-aware local alignment distance) 
exists too.
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(1-9) How can we compare exemplar sets? (cnt)

Fig.  Computation of M-distance for the global alignment.
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(1-10) How do we compare exemplar sets in DB?
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Fig.  A monotone increasing positive function for videos in DB. 
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(1-11) How do we compare exemplar sets in DB? (cnt)

Fig.  Exemplar set shuffling for similarity measurement:
Sumo wrestlers and comic story tellers from NHK archive. 
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(1-12) How do we compare exemplar sets in DB?

ROI (region of interest)

Fig.  11-point interpolated precision and recall.
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(2-1) Numerical data and GUI
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 Enquete has many queries.

 Target persons are tired of answering ⇒ many blanks.

 If we need to estimate blank items ⇒ EM family, NNMD.

 We put 0 to blank items.

 In this example, we consider a problem of GUI design.
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(2-2) Numerical data and GUI (cnt)

Fig.  Job hunters’ global map (from a real Web site).

Fig.  Enlarged local user map: Icon positions are more uniform.

(with Mr. H, Kamiya and Dr. R. Yokote)
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(2-4) Binary data and GUI (cnt)(2-3) Numerical data and GUI (cnt)

Fig.  Doubly spherical GUI for
all-recording TV database
(with Mr. M. Maejima).

Fig.  Doubly spherical GUI for
NIRS brain signals
with/without a task
(with Mr. T. Horie).
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(3-1) Security via brain signals

 Big data per se ⇒ GUI ⇒ security by authentication.

 Bypassing the password 

(DARPA, the N.Y. Times, Mar. 17, 2012).

 Brain signals (NIRS, near infrared spectroscopy).

Fig.  NIRS measurement for user authentication.
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(3-2) Security via brain signals (cnt)

Fig.  SVM used as a filter.
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(3-3) Security via brain signals (cnt)

Fig.  False acceptance rate and false rejection rate:
Equal error rate = 99.97%.

Mahalanobis distance threshold
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(4-1) Committee decision with crowd sourcing

committee machine

X

X2 Xm

weak 
machine 2

weak 
machine m

X1

weak 
machine 1

Xm+1

person 1

Xm+N

person N

Fig.  Bagging (bootstrap aggregation) including non-professional crowd.



37

(4-2) Committee decision with crowd sourcing

Fig.  Identification of human and nonhuman; e. g., Google reCAPTCHA.

Just one of these two queries are used for the authentication.

The other is used for the improvement of machine’s ability.       
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(4-3) Committee decision with crowd sourcing

(a)
(b)

Fig.  Crowd sourcing example in bioinformatics.
(a) Foldit by University of Washington.
(b) 3D view is this presenter’s own by using an NCBI’s tool.

Note: These illustrations should be used only for academic uses.
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Concluding remarks

Common methods exist for a variety of big 
data.

Machine learning gives one of such 
foundations. Seeds for new methods exist.

Compatibility with human sensibility needs 
to be enhanced more.

Committee-based methods with crowd 
sourcing will be quite powerful.
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