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Big data concepts |

» True big data has an inaccessible size = No way to manage.

»3V for big data: Data’s {Volume, Velocity, Variety}
need to be manageable (D. Laney, META Group, 2001).
»4V: Veracity (by Villanova University).

»5V: Value (by HRBOSS blog).

I

» S0 many requirements for human power alone.

»Machine learning strategies:
Novel methods inspired by unprecedented problems.

» The fusion with crowd sourcing will also be mentioned.
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Concept 1: Incomplete data E—

Perfectly measured data are incomplete yet!

Y

Complete data < Unobservable Observable < Incomplete data

Complete data pdf for modeling: (x| 6)

Incomplete data pdf: g(y| @) = J'X(y) f(x|6)dx

Separable complete data: X ={Y,Z} (random variables)
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Concept 2: Good models it

(1) Essentially, all models are wrong, but some are useful.
(G. E. P. Box; In G. E. P. Box and N. R. Draper, Empirical model building and response
surfaces, p. 424, John Wiley & Sons, 1987).

(2) Good models mismatch well, and are therefore dependable.
(The presenter of this talk, Y. Matsuyama).

[Example]
de(f, f)=d(f, F)+d(F,f)

L J
L Y J Y

modeling  VQ or
vector k-means

space of m-th order AR processes

R. M. Gray, A. Buzo, A. H. Gray, Jr., and Y. Matsuyama, Distortion measures for speech processing,
IEEE Trans. vol. ASSP-28, pp. 367-376, 1980.
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Case 1: Missing is a weight vector (least squares)

o

Don’t underrate simple classic methods. °.* Data size is big.

[Example : E. Hoerl & R. W.Kennard, Technometrics, vol.12, pp 69 -82,1970.]
X - -+ position vector
{x;}", ---observed data
linearmodel - y=f(x;w)=w'x
RBF kernel model ---y = f(x;w) = Zilwi exp(— 72 I x—x, HZ)
Least squares learning :

dr=argmin {7 (F(xiw) -y, + 4] wP

=(X'X+A)"'X"y

Here,

X [X,---X |- for the linear model (matrix)
B X = exp(— 72X, - X; ||2)~--f0r the RBF kernel model

(But, still sensitive to outliers = many improved methods to the rubustness.)
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Case 2: Missing is a boundary set (supervised)

xzn Penetration of & x100% is allowed.

Fig. An SVM example using LIBSVM
of C-C. Chang and C-J. Lin of NTU.

. . . . Prof. V. Vapnik on 2013-11-26 in Tokyo.
Fig. Support vector machine with a soft margin. Photograph allowed by himsef.
No usage other than academic one is
allowed (© Y. Matsuyama).
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Case 3-1: Missing is a partition set (unsupervised)

\ w,
»Weight vectors generate a set of partitions.

»Each weight vector moves to the centroid of a partition.

Vector k-means (vector quantization) is much alive for structurization of big data.

J. Linde, A. Buzo, R.M. Gray, IEEE Trans. COM, vol. COM-28, pp.84-95, 1980 (batch mode).

Y. Matsuyama, R. M. Gray, |IEEE Trans. vol. [IT-27, pp.31-40, 1981 (tree + batch VQ).

Y. Matsuyama, R. M. Gray, IEEE Trans. vol. COM-30, pp. 711-720, 1982 (tree + inverse filter VQ).

T. Kohonen, Leaning vector quantization, In The Handbook of Brain Theory and Neural Networks.,
pp. 537-540. MIT Press, Cambridge, MA, 1995 (successive mode, or stochastic gradient descent).

YV V V V V




PIEEEIET ICALIP2014

T e ;

Case 3-2: Missing is a boundary set (unsupervised)

» Vector quantization was unified as a competitive learning algorithm
for composite cost functions.

(Y. Matsuyama, Harmonic competition: A self-organizing multiple criteria optimization,
IEEE Trans. NN, vol. 7, pp. 652-668, 1996.)

D=3..D.
Dn = Z:\::_OI ( fn + z::_()lﬂ“nkgnk ) (HIL:_OlhnI ) Q(Xnawm)

f(x,,w,_)--- distance between x  and w
N-1 M-l .
Ok ({XI }i:o ’ {Wj }j:O ) --constraint

h, ({xi s ) {W . }'}":: ) --penalty for label conflict

]

Q(xn W ) --- 1if w_ 1s the winner for the input x |; otherwise 0.
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Case 3-3: Missing is an exemplar set (unsupervised)

» Affinity propagation (similar to VQ, but an unspecified number of
exemplars is found).

(B. J. Frey and D. Dueck, Clustering by passing messages between data points,
Science, vol. 315, no. 5814, pp. 972-976, 2007.

o o
o °© o : Q
X, fo) ; /""*wo N\ /,O
(@) el \
2 o |:> ul o
N o 4 Q
Yo ) o 0
o oo © —0 O]
o X nQ 0/ b

Fig.. Exemplars found by affinity propagation.

> Similarity matrix= exemplars and clusters associated with them.
» Convergence is not yet proved rigorously (but, often effective).
» For time series, we need its sophistication.

10
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Case 4-1: Missing information is more general (unsupervised/supervised)

» EM algorithm (expectation-maximization algorithm):

This is regarded as a champion algorithm which estimates missing information.

(A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from Incomplete data via
the EM Algorithm, J. Royal Statistical Society. Series B, vol. 39, pp. 1-38, 1977).

Complete data pdf: f(x|0)=f(y,z|0)= f(x]0)
Incomplete data pdf: g(y |0) = IX( ) f(x|0)dx
y

logg(y—m) = Ex{log (x| )‘y,a} + D(f(x|y,a)”f(x|y,9))

gyl f(x|a)
N J J
Y Y Y
(1) We want this term (3) Keep this term (2) This term is
to be nonnegative. nonnegative! always nonnegative.

11
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Case 4-2: a-EM algorithm (EM algorithm is yet a special case)

a-EM algorithm’s basic equation:

l+a

L&"‘)(wm)—Ep”,w[L(;”(w<o>]+1‘“{p“”(”’)} D) (0l w)

2 pY|¢(y | @)

— - Y ’
(1) We want (2) This term is nonnegative for a<1.
to keep this
them to be

(3) Keep this term

nonnegative. )
nonnegative

The case of a = -1 is the traditional log-EM algorithm.

Y. Matsuyama,
The alpha-EM algorithm: Surrogate likelihood maximization using alpha-
logarithmic information measures, IEEE Trans. On Information Theory, vol. 49, No.

3, pp. 692-706, March, 2003.
12
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Case 4-3: Relationship between EM and vector k-means (VQ)

+ 4000
a-EM log-EM
. ~ Ve
3000 X T
= Z l: 4 o
8 s /
£ / [
T 2000 A e
— iz t alpha=1.0-0.0
2 / 4 alpha= 1.0
) I t alpha= 0.6
1000+ /7 s | alpha= 0.0
b, alpha=-1.0
. alpha=-1.2
0
0 5 10 15 20 25 30 35 40 45 50

iterations

Fig. Convergence of a-EM and log-EM.

» a-EM outperforms log-EM on
the convergence speed.

. | » EM-family ovector quantization

x1(t)

Fig. Gaussian mixture model.
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Case 4-4: a-HMM estimation

a-EM algorithm \

log-EM algorithm i

¥ scaling
¥ undo mechanism

)
a-HMM |

o ¥ probabilistic !

. . 1

{ log-HMM approximations i
| (Baum-Welch) -cau_salappmx_lmatlon !
* series expansion :

i

1

i

1

U

Fig. Relationship of alpha-HMM and log-HMM  Fig. Alpha-HMM vs. log-HMM (Baum-Welch) for
brain signals (NIRS signals).

» Y. Matsuyama, Hidden Markov model estimation based on the alpha-EM algorithm:
Discrete and continuous alpha-HMMSs, Proceedings of International Joint Conference on
Neural Networks, pp.809-816, San Jose, CA, 2011.

» A. Rahimi’s correction to L. Rabiner’s flaws on scaling was generalized too.
14
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Case 4-5: ICA (missing are hidden components).

[RapidICA]~
Stepl: v« Wz AW,
Step2: W, « W
Step3: W« W+ AW,

where

AW, =—adiag(l/ E [°G(y)]) E[6G¥)z"] AW,

Stepd: W (WW')7 W g
St&p 5 &“FJ.{:I.{, — A“FJ- 10602 -

Stepf: AW, W-W_, S 1ot
Step 7: W « W + diag( 17,)AW,

Step 8 W (WW )W

20 o a0
cpu time [sec]

Fig. Rapid ICA
» R. Yokote, Y. Matsuyama, Rapid algorithm for independent component analysis, J. Signal and Info.
Proc., vol. 3, pp. 275-285, 2013.

» Fast ICA was by A Hyvéarinen; Fast and robust fixed-point algorithms for independent component
analysis, IEEE Trans. NN, vol. 10, No. 3, 1999, pp. 626- 634., 1999. 15
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Case studies: Unstructured data management

> Tremendous amount of data is accumulated
continuously.

» Mostly, data are unstructured.

» Some are manually labeled, however, labels are
usually personal.

» Structurization by machine learning strategies is
effective and fashionable.

> New target problems = new methods
= new theory

16
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(1) Similar video retrieval: Numerical labelling

» Video retrieval: One of the most familiar target to be structured.
» The size of each element is already big.
> Lengths are different.

input video
feature extraction
system | [
similarity computation
| |
output ranking by similarity

Fig. Similar video retrieval.
17
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(1-2) Similar video retrieval: Similarity

» How do we define similarity measures?

3 >
0 | -6} -12]|_-18| -24|—-30 | -36|_-42|_-48
T ~
Pl & || 7213] 11| 17| -23|_-29| -35
TN T2~ % ~ ~ ~
Al o 7| 22 -8|_-14| 13| 13| -19]|_-25
3 T~ 1 b ~ LS LN
i N | 48| 12| -8 -2|_-8| 13| 15| -7|_-13
T~ LS N ~ N R
D | 24| 16| 14 6| -3|_ -9l -15| -13| -8
1 T~ T I~ ~ N A
A | 39| 22| 17| 12| 7| 5| 5L 11| -13
v

Fig. Needleman-Wunsch algorithm in bioinformatics.
18




(1-3) Similar video retrieval: Similarity

» Too simple: L-distance (Levenshtein distance) from
another big data area is not applicable.

v Only letter-wise.
v"Not context-aware.

"

» Exemplars are expressed by floating-point numbers.
» A more general distance measure- - - M-distance”.

» Each video can be numerically labelled using
positions and expressions of exemplars.

(*) Y. Matsuyama and M. Moriwaki 19

(1-4) Similar video retrieval: Similarity

» How do we express each as a vector.
> You can find many effective ways.
» We here show you an example by CSD.

:Color Bin |

|
1

| k1|
sliding patch
Fig. A conceptual CSD (color structure descriptor).

20
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(1-5) Similar video retrieval: Exemplars

» Key frames = exemplars = their numbers are variable.
» Each frame is a feature-extracted vector such that
T d
X; =[Xi, 5 Xl s X 20, Zkzlxik =1
> Then, x; isina simplex.
» Exemplars are in this space.

Fig. 2D simplex. 21
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(1-6) Similar video retrieval: Exemplars (cnt)

video frames

12 [N

-

elapsed time considered @

not considered

Fig. Exemplar frames reflecting time course.

22
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(1-7) Similar video retrieval: How to find such exemplars?

time (frame number)
Fig. Time bound affinity propagation, w=20 (computed by Mr. M. Moriwaki).

» Time-bound affinity propagation (TBAP) -+ windowing.
» Exemplars per se are found.

» The number of exemplars is variable.
23
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(1-7) Similar video retrieval: How to find such exemplars? (cnt)

r=-

- [} o —
| S

———#-#"’i-lﬂ' '

_' . OW ;“r'_‘:

- .

‘W L ———
W,0- X

--.. time course
P .

> W
1
Fig. Harmonic competition type (generalized vector k-means or VQ).

» A class of the harmonic competitive learning.

» Generalized vector k-means are found.

» Number of competitive representatives is pre-specified.

» Each exemplar is found as the nearest frame to the representative.

24
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(1-8) How can we compare exemplar sets?

M-distance = d( {exemplar, context } ', {exemplar,, context, }'j“jl )

» M-distance 1 (context-aware global alignment distance)
» Naming is after the Levenshtein distance (edit distance).

» L-distance was a very special case:
v’ Discrete alphabet
v" Identical or not identical- - -{0, 1}
v’ Letter-to-letter (no ability reflect contexts)
v Gap penalty is only letter-wise.

» M-distance 2 (context-aware local alignment distance)
exists too.

25
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(1-9) How can we compare exemplar sets? (cnt)

o

Video B
—_—> exemplar 1 exemplar2 | exemplar 3 exemplar 4
li E® =2 E®, =3 E® =2 EZ =1
Or— -0.4{— -l -1.4f« -1.6
< | exemplar 1 E4 =2[t -0.4 1.054 0.743— 0.343— 0.143
3 | exemplar2 [E*, =2t -0.8\ 0.834% 2.597— 2,197 1.997
~ | exemplar 3 [E*; = 3|t -1.4f~ 0.468% 2.176[% 37151 3.515

Fig. Computation of M-distance for the global alignment.

26
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(1-10) How do we compare exemplar sets in DB?

u(AB)=h(f,)/w(Y ELY E?)

h(X)---monotone increasing positive function

w(a,b)---average function between a and b

h(X)“/

__/

0 X

Fig. A monotone increasing positive function for videos in DB.

27
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(1-11) How do we compare exemplar sets in DB? (cnt)

block

10 frames

Fig. Exemplar set shuffling for similarity measurement:
Sumo wrestlers and comic story tellers from NHK archive.

28
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(1-12) How do we compare exemplar sets in DB?

ROI (region of interest)

e [

precision
04 06 08

02

00

00 02 04 06 08 10
recall

Fig. 11-point interpolated precision and recall.

29
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(2-1) Numerical data and GU| ~ #kisenbadd

Enquete data: X =[x, --,X;,"**,X, ]

| -th person: x.= [ Xipsr e X0 o Xig ] !

X, € {~1,0,1}

i

dissimilarity ~ d(x,,x,) = —X, X,

» Enquete has many queries.

» Target persons are tired of answering = many blanks.
> If we need to estimate blank items = EM family, NNMD.
» We put 0 to blank items.

> In this example, we consider a problem of GUI design.

30
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(2-2) Numerical data and GUI (cnt)

Fig. Job hunters’ global map (from a real Web site).

95535/Electronics and Informatics
1062p&/Information Scjence
90487/Computational Science
112357/ Scientific and Enginsering Simulation

prmation Engineering

86309/ Electrical and Electronic Engineer’r‘?m"aecmm' Engineering af
89514/Architecture and Civil Enginesring

92217/ Information Science

74092/Mechanical Engineering

Fig. Enlarged local user map: Icon positions are more uniform.

(with Mr. H, Kamiya and Dr. R. Yokote) 31
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(2-3) Numerical data and GUI (cnt)

Fig. Doubly spherical GUI for Fig. Doubly spherical GUI for
all-recording TV database NIRS brain signals
(with Mr. M. Maejima). with/without a task

(with Mr. T. Horie).
32
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(3-1) Security via brain signals

> Big data per se = GUI = security by authentication.
» Bypassing the password

(DARPA, the N.Y. Times, Mar. 17, 2012).
» Brain signals (NIRS, near infrared spectroscopy).

Fig. NIRS measurement for user authentication.

33
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(3-2) Security via brain signals (cnt)

windowing
|

power spectral density]
[
normalization ]

I
logarithm
I
PCA
I

SVM (One vs One)
) |

<average weight vector>v

Fig. SVM used as a filter.

NIRS brain signal

(non-inversive measurement)

34
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(3-3) Security via brain signals (cnt)

o S
O\ -— ‘1. =T ——
[0 \ =T
® o \ -
- o
= @ il. L
l y --- FRR
= i e
© 1 FAR
': Digtance 157+
= _| i .
=t . i
[ !
g — % !
1 /
i #
= — ____hl__-.-_"" ______________________________
] | | | ] |
1 2 3 4 5 B

Mahalanobis distance threshold

Fig. False acceptance rate and false rejection rate:
Equal error rate = 99.97%.
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(4-1) Committee decision with crowd sourcing

xl Xz Xm X

\4 v

[ weak ] weak weak [ | ]
machine 1 machine 2 machine m P

( committee machine )

Fig. Bagging (bootstrap aggregation) including non-professional crowd.

person N

36
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(4-2) Committee decision with crowd sourcing

Fig. ldentification of human and nonhuman; e. g., Google reCAPTCHA.

Just one of these two queries are used for the authentication.
The other is used for the improvement of machine’s ability.

37
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(4-3) Committee decision with crowd sourcing

PUZZLES = CATEGORIES GROUPS PLAYERS  RECIPES CONTESTS
HLOG & FEEDBACK  FORUM  WIKI FAQ ABOUT  CHEDITS

GET STARTED: DOWINL OAD
Rt Ol 10.5 o later [T

Are you new to Foldit? Click here.

Are you an aducator? Click hara.

SEARCH

| Google Search |11 ooty sesech ke

— (b)

Fig. Crowd sourcing example in bioinformatics.
(a) Foldit by University of Washington.
(b) 3D view is this presenter’s own by using an NCBI’s tool.

Note: These illustrations should be used only for academic uses.

38
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i Concluding remarks

» Common methods exist for a variety of big
data.

» Machine learning gives one of such
foundations. Seeds for new methods exist.

» Compatibility with human sensibility needs
to be enhanced more.

» Committee-based methods with crowd
sourcing will be quite powerful.

39
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